Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 101366 by bobhans last updated on 02/Jul/20

lim_(x→0)  ((x^3 −sin^3 x)/x^5 ) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} }\:=? \\ $$

Commented by Dwaipayan Shikari last updated on 02/Jul/20

lim_(x→0) ((x^3 −(x−(x^3 /6))^3 )/x^5 )=lim_(x→0) ((x^3 −x^3 +(x^9 /6)+((3x^5 )/6)−((3x^7 )/(36)))/x^5 )=(((3x^5 )/6)/x^5 )=(1/2)  {(x^9 /6) and ((3x^7 )/(36))are  negligable}

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{3}} −\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)^{\mathrm{3}} }{{x}^{\mathrm{5}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{3}} −{x}^{\mathrm{3}} +\frac{{x}^{\mathrm{9}} }{\mathrm{6}}+\frac{\mathrm{3}{x}^{\mathrm{5}} }{\mathrm{6}}−\frac{\mathrm{3}{x}^{\mathrm{7}} }{\mathrm{36}}}{{x}^{\mathrm{5}} }=\frac{\frac{\mathrm{3}{x}^{\mathrm{5}} }{\mathrm{6}}}{{x}^{\mathrm{5}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\:\left\{\frac{{x}^{\mathrm{9}} }{\mathrm{6}}\:{and}\:\frac{\mathrm{3}{x}^{\mathrm{7}} }{\mathrm{36}}{are}\:\:{negligable}\right\} \\ $$

Commented by bemath last updated on 02/Jul/20

agree

$$\mathrm{agree} \\ $$

Answered by ajfour last updated on 02/Jul/20

lim_(x→0) (((x−sin x)(x^2 +xsin x+sin^2 x))/x^5 )  lim_(x→0) (((x−sin x))/x^3 )×lim_(x→0) (((x^2 +xsin x+sin^2 x))/x^2 )  =lim_(x→0) ((x−(x−(x^3 /(3!))+....))/x^3 )×(3)  =  (1/(3!))×3 = (1/2) .

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}−\mathrm{sin}\:{x}\right)\left({x}^{\mathrm{2}} +{x}\mathrm{sin}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{5}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}−\mathrm{sin}\:{x}\right)}{{x}^{\mathrm{3}} }×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}^{\mathrm{2}} +{x}\mathrm{sin}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+....\right)}{{x}^{\mathrm{3}} }×\left(\mathrm{3}\right) \\ $$$$=\:\:\frac{\mathrm{1}}{\mathrm{3}!}×\mathrm{3}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Commented by bemath last updated on 02/Jul/20

yes..thank you sir

$$\mathrm{yes}..\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com