Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 101225 by harckinwunmy last updated on 01/Jul/20

Commented by Dwaipayan Shikari last updated on 01/Jul/20

x^a =y^b =z^c =k(k≠0)  x=k^(1/a)  y=k^(1/b)    z=k^(1/c)   y^2 =k^(2/b)   xz=k^((1/a)+(1/c))   (2/b)=(1/a)+(1/c)⇒((2a−b)/(ab))=(1/c)⇒c=((ab)/(2a−b))

$${x}^{{a}} ={y}^{{b}} ={z}^{{c}} ={k}\left({k}\neq\mathrm{0}\right) \\ $$$${x}={k}^{\frac{\mathrm{1}}{{a}}} \:{y}={k}^{\frac{\mathrm{1}}{{b}}} \:\:\:{z}={k}^{\frac{\mathrm{1}}{{c}}} \\ $$$${y}^{\mathrm{2}} ={k}^{\frac{\mathrm{2}}{{b}}} \:\:{xz}={k}^{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}} \\ $$$$\frac{\mathrm{2}}{{b}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}\Rightarrow\frac{\mathrm{2}{a}−{b}}{{ab}}=\frac{\mathrm{1}}{{c}}\Rightarrow{c}=\frac{{ab}}{\mathrm{2}{a}−{b}} \\ $$$$ \\ $$

Commented by smridha last updated on 01/Jul/20

2.((log(x))/((y−z)))=((log(y))/((z−x)))=((log(z))/((x−y)))=u  now   x^x .y^y .z^z =e^(xlog(x)+ylog(y)+zlog(z))   putting the values  we get         =e^(ux(y−z)+uy(z−x)+uz(x−y))          =e^0 =1

$$\mathrm{2}.\frac{\boldsymbol{{log}}\left(\boldsymbol{{x}}\right)}{\left(\boldsymbol{{y}}−\boldsymbol{{z}}\right)}=\frac{\boldsymbol{{log}}\left(\boldsymbol{{y}}\right)}{\left(\boldsymbol{{z}}−\boldsymbol{{x}}\right)}=\frac{\boldsymbol{{log}}\left(\boldsymbol{{z}}\right)}{\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right)}=\boldsymbol{{u}} \\ $$$$\boldsymbol{{now}}\: \\ $$$$\boldsymbol{{x}}^{\boldsymbol{{x}}} .\boldsymbol{{y}}^{\boldsymbol{{y}}} .\boldsymbol{{z}}^{\boldsymbol{{z}}} =\boldsymbol{{e}}^{\boldsymbol{{xlog}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{ylog}}\left(\boldsymbol{{y}}\right)+\boldsymbol{{zlog}}\left(\boldsymbol{{z}}\right)} \\ $$$$\boldsymbol{{putting}}\:\boldsymbol{{the}}\:\boldsymbol{{values}}\:\:\boldsymbol{{we}}\:\boldsymbol{{get}} \\ $$$$\:\:\:\:\:\:\:=\boldsymbol{{e}}^{\boldsymbol{{ux}}\left(\boldsymbol{{y}}−\boldsymbol{{z}}\right)+\boldsymbol{{uy}}\left(\boldsymbol{{z}}−\boldsymbol{{x}}\right)+\boldsymbol{{uz}}\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right)} \\ $$$$\:\:\:\:\:\:\:=\boldsymbol{{e}}^{\mathrm{0}} =\mathrm{1} \\ $$

Commented by bemath last updated on 01/Jul/20

(3a)(√(p+(√q))) = (√x) + (√y)  (√(((√x)+(√y))^2 )) = (√(x+y+2(√(xy))))  → { ((p=x+y)),((q=4xy)) :}

$$\left(\mathrm{3a}\right)\sqrt{\mathrm{p}+\sqrt{\mathrm{q}}}\:=\:\sqrt{\mathrm{x}}\:+\:\sqrt{\mathrm{y}} \\ $$$$\sqrt{\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\right)^{\mathrm{2}} }\:=\:\sqrt{\mathrm{x}+\mathrm{y}+\mathrm{2}\sqrt{\mathrm{xy}}} \\ $$$$\rightarrow\begin{cases}{\mathrm{p}=\mathrm{x}+\mathrm{y}}\\{\mathrm{q}=\mathrm{4xy}}\end{cases}\: \\ $$

Commented by Dwaipayan Shikari last updated on 01/Jul/20

p+(√q)=x+y+2(√(xy))  p=x+y  (√q)=2(√(xy))  (p^2 −q)^(1/2) =((x+y)^2 −4xy)^(1/2) =x−y

$${p}+\sqrt{{q}}={x}+{y}+\mathrm{2}\sqrt{{xy}} \\ $$$${p}={x}+{y} \\ $$$$\sqrt{{q}}=\mathrm{2}\sqrt{{xy}} \\ $$$$\left({p}^{\mathrm{2}} −{q}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left(\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{4}{xy}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={x}−{y} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com