Question Number 205726 by hardmath last updated on 28/Mar/24 | ||
$$ \\ $$101 is chosen arbitrarily from the numbers 1,2,3,...,199,200. Prove that two of these selected numbers can be found such that one is divisible by the other. | ||
Answered by A5T last updated on 29/Mar/24 | ||
$${All}\:{n}_{{i}} \in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{200}\right\}\:{are}\:{of}\:{the}\:{form}\:\mathrm{2}^{{k}_{{i}} } {a}_{{j}} \\ $$$${where}\:{a}_{{j}} \in\left\{\mathrm{1},\mathrm{3},\mathrm{5},...,\mathrm{199}\right\},\:\mathrm{2}^{{k}_{{i}} } \:{is}\:{the}\:{largest}\:{power} \\ $$$${of}\:{two}\:{that}\:{divides}\:{n}_{{i}} .\: \\ $$$${Since}\:{there}\:{exists}\:{only}\:\mathrm{100}\:{possible}\:{different} \\ $$$${values}\:{for}\:{a}_{{j}} .\:{When}\:{there}\:{are}\:\mathrm{101}\:{different}\: \\ $$$${numbers},\:{there}\:{exists}\:{atleast}\:{two},{say}\:{n}_{{i}_{{i}} } {and}\:{n}_{{i}_{\mathrm{2}} ,} \\ $$$${such}\:{that}\:{a}_{{j}_{\mathrm{1}} } ={a}_{{j}_{\mathrm{2}} } .\:{The}\:{larger}\:{of}\:{n}_{{i}_{\mathrm{1}} } \:{or}\:{n}_{{i}_{\mathrm{2}} } \:{must}\: \\ $$$${divide}\:{the}\:{other}\::\frac{{n}_{{i}_{\mathrm{1}} } }{{n}_{{i}_{\mathrm{2}} } }=\frac{\mathrm{2}^{{k}_{\mathrm{1}} } {a}_{{j}_{\mathrm{2}} } }{\mathrm{2}^{{k}_{\mathrm{2}} } {a}_{{j}_{\mathrm{1}} } }=\mathrm{2}^{{k}_{\mathrm{1}} −{k}_{\mathrm{2}} } ;\frac{{n}_{{i}_{\mathrm{2}} } }{{n}_{{i}_{\mathrm{1}} } }=\mathrm{2}^{{k}_{\mathrm{2}} −{k}_{\mathrm{1}} } \:. \\ $$ | ||
Commented by hardmath last updated on 29/Mar/24 | ||
$$ \\ $$Dear professor, Is this a generalization? How can we write in response? | ||
Commented by A5T last updated on 29/Mar/24 | ||
$${It}\:{is}\:{not}\:{a}\:{generalization}.\:{Every}\:{n}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{200}\right\} \\ $$$${is}\:{a}\:{product}\:{of}\:{the}\:{largest}\:{power}\:{of}\:\mathrm{2}\:{that}\:{divides} \\ $$$${it}\:{and}\:{an}\:{odd}\:{number}.\:{For}\:{n}\leqslant\mathrm{200},\:{such}\:{odd}\:{number} \\ $$$$\in\left\{\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7},...,\mathrm{199}\right\}\:{with}\:{cardinality}\:{of}\:\mathrm{100}. \\ $$$${So},{for}\:\mathrm{101}\:{numbers},\:{one}\:{must}\:{have}\:{two}\:{numbers} \\ $$$${with}\:{the}\:{same}\:``{odd}\:{part}''.\:{Say}\:{n}_{\mathrm{1}} =\mathrm{2}^{{k}} {j},{n}_{\mathrm{2}} =\mathrm{2}^{{q}} {j} \\ $$$${If}\:{n}_{\mathrm{1}} >{n}_{\mathrm{2}} ,\:{then}\:{n}_{\mathrm{2}} \mid{n}_{\mathrm{1}} \:{and}\:{if}\:{n}_{\mathrm{1}} >{n}_{\mathrm{2}} ,\:{n}_{\mathrm{1}} \mid{n}_{\mathrm{2}} \\ $$ | ||