Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 100968 by bachamohamed last updated on 29/Jun/20

      Σ_(k=1) ^∞  (x+k)^(1/2^(k+1) ) =?      x>0

$$\:\:\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\mathrm{x}+\mathrm{k}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}+\mathrm{1}} }} =?\:\:\:\:\:\:\mathrm{x}>\mathrm{0}\: \\ $$

Answered by mathmax by abdo last updated on 29/Jun/20

S =Σ_(n=1) ^∞ (x+n)^(1/(2^(n+1)  ))  =Σ_(n=1) ^∞  U_n    we have U_n >0 ⇒  (U_(n+1) /U_n ) =(((x+n+1)^(1/2^(n+2) ) )/((x+n)^(1/2^(n+1) ) )) =(({(x+n+1)^(1/2^(n+1) ) }^(1/2) )/({(x+n)^(1/2^n ) }^(1/2) )) =(√(((x+n+1)^(1/2^(n+1) ) )/((x+n)^(1/2^n ) )))  =(√((√(x+n+1))×(((x+n+1)/(x+n)))^(1/2^n ) ))=(x+n+1)^(1/4) ×(((x+n+1)/(x+n)))^(1/2^(n+1) )   =(x+n+1)^(1/4) ×(1+(1/(x+n)))^(1/(2^(n+1)  )) ∼(x+n+1)^(1/4)  ×(1+(1/(2^(n+1) (x+n))))  =(x+n+1)^(1/4) +(((x+n+1)^(1/4) )/(2^(n+1) (x+n))) →+∞ ⇒this serie is divergent...!

$$\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(\mathrm{x}+\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \:}} \:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{U}_{\mathrm{n}} \:\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{U}_{\mathrm{n}} >\mathrm{0}\:\Rightarrow \\ $$ $$\frac{\mathrm{U}_{\mathrm{n}+\mathrm{1}} }{\mathrm{U}_{\mathrm{n}} }\:=\frac{\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{2}} }} }{\left(\mathrm{x}+\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }} }\:=\frac{\left\{\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\left\{\left(\mathrm{x}+\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }} \right\}^{\frac{\mathrm{1}}{\mathrm{2}}} }\:=\sqrt{\frac{\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }} }{\left(\mathrm{x}+\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }} }} \\ $$ $$=\sqrt{\sqrt{\mathrm{x}+\mathrm{n}+\mathrm{1}}×\left(\frac{\mathrm{x}+\mathrm{n}+\mathrm{1}}{\mathrm{x}+\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }} }=\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} ×\left(\frac{\mathrm{x}+\mathrm{n}+\mathrm{1}}{\mathrm{x}+\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }} \\ $$ $$=\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} ×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}+\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \:}} \sim\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \left(\mathrm{x}+\mathrm{n}\right)}\right) \\ $$ $$=\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} +\frac{\left(\mathrm{x}+\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \left(\mathrm{x}+\mathrm{n}\right)}\:\rightarrow+\infty\:\Rightarrow\mathrm{this}\:\mathrm{serie}\:\mathrm{is}\:\mathrm{divergent}...! \\ $$

Commented bybachamohamed last updated on 29/Jun/20

thank′s sur but   Σ_(k=1) ^n (x+k)^(1/2^(k+1) ) ={(x+1)^(1/2^2 ) +(x+2)^(1/2^3 ) +(x+3)^(1/2^4 ) ......(x+n)^(1/2^(n+1) )    ⇒ Σ_(k=1) ^(k=n) (x+k)^(1/2^(k+1) ) =(√(√((x+1)+(√((x+2)+(x+3)...+.....(√((x+n))))))))=1  ⇒ Σ_(k=1) ^∞ (x+k)^(1/2^(k+1) ) =(√(√((x+1)+(√((x+2)+(√((x+3)+(√((x+4)+........∞)))))))))=1   ⇒ serie is converge   pourqoi?

$${thank}'\mathrm{s}\:\mathrm{sur}\:\mathrm{but}\: \\ $$ $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({x}+{k}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{{k}+\mathrm{1}} }} =\left\{\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }} +\left({x}+\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }} +\left({x}+\mathrm{3}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }} ......\left({x}+{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }} \right. \\ $$ $$\:\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\sum}}\left({x}+{k}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{{k}+\mathrm{1}} }} =\sqrt{\sqrt{\left({x}+\mathrm{1}\right)+\sqrt{\left({x}+\mathrm{2}\right)+\left({x}+\mathrm{3}\right)...+.....\sqrt{\left({x}+{n}\right)}}}}=\mathrm{1} \\ $$ $$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left({x}+{k}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{{k}+\mathrm{1}} }} =\sqrt{\sqrt{\left({x}+\mathrm{1}\right)+\sqrt{\left({x}+\mathrm{2}\right)+\sqrt{\left({x}+\mathrm{3}\right)+\sqrt{\left({x}+\mathrm{4}\right)+........\infty}}}}}=\mathrm{1}\: \\ $$ $$\Rightarrow\:\mathrm{serie}\:\mathrm{is}\:\mathrm{converge}\: \\ $$ $${pourqoi}? \\ $$

Commented bymaths mind last updated on 29/Jun/20

1st lign ⇏2nd lign  (√x)+(√y)≠(√(x+(√y)))

$$\mathrm{1}{st}\:{lign}\:\nRightarrow\mathrm{2}{nd}\:{lign} \\ $$ $$\sqrt{{x}}+\sqrt{{y}}\neq\sqrt{{x}+\sqrt{{y}}}\:\: \\ $$

Commented bybachamohamed last updated on 29/Jun/20

no it′ s right just look

$$\mathrm{no}\:\mathrm{it}'\:\mathrm{s}\:\mathrm{right}\:\mathrm{just}\:\mathrm{look} \\ $$

Commented bymathmax by abdo last updated on 29/Jun/20

sir you must prove this by recurrence your snswer is not clear...

$$\mathrm{sir}\:\mathrm{you}\:\mathrm{must}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{by}\:\mathrm{recurrence}\:\mathrm{your}\:\mathrm{snswer}\:\mathrm{is}\:\mathrm{not}\:\mathrm{clear}... \\ $$

Answered by mathmax by abdo last updated on 29/Jun/20

if you have another method post it sir bacha

$$\mathrm{if}\:\mathrm{you}\:\mathrm{have}\:\mathrm{another}\:\mathrm{method}\:\mathrm{post}\:\mathrm{it}\:\mathrm{sir}\:\mathrm{bacha} \\ $$

Commented bybachamohamed last updated on 29/Jun/20

i am looking for other ways becaus    i have reached many contradiction  so i shared the idea with you

$$\mathrm{i}\:\mathrm{am}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{other}\:\mathrm{ways}\:\mathrm{becaus}\: \\ $$ $$\:\mathrm{i}\:\mathrm{have}\:\mathrm{reached}\:\mathrm{many}\:\mathrm{contradiction} \\ $$ $$\mathrm{so}\:\mathrm{i}\:\mathrm{shared}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{with}\:\mathrm{you}\: \\ $$

Commented bymathmax by abdo last updated on 30/Jun/20

nevermind sir you are always welcome...

$$\mathrm{nevermind}\:\mathrm{sir}\:\mathrm{you}\:\mathrm{are}\:\mathrm{always}\:\mathrm{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com