Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 100404 by PengagumRahasiamu last updated on 26/Jun/20

Commented by PengagumRahasiamu last updated on 26/Jun/20

Thank you

Commented by Rasheed.Sindhi last updated on 26/Jun/20

(i)⇒x=((28−y)/(y+2)), (ii)⇒x=((37−z)/(z+3))                  ((28−y)/(y+2))=((37−z)/(z+3))........(iv)  (iii)⇒y=((42−2z)/(z+3))  (iii)&(iv)⇒            ((28−((42−2z)/(z+3)))/(((42−2z)/(z+3))+2))=((37−z)/(z+3))            (((28z+84−42+2z)/(z+3))/((42−2z+2z+6)/(z+3)))=((37−z)/(z+3))           ((30z+42)/(48))=((37−z)/(z+3))           ((5z+7)/8)=((37−z)/(z+3))         5z^2 +22z+21=296−8z         5z^2 +30z−275=0         z^2 +6z−55=0      ( z+11)(z−5)=0       z=−11(descardable),5  x=((37−z)/(z+3))=((37−5)/(5+3))=((32)/8)=4  y=((42−2z)/(z+3))=((42−2(5))/(5+3))=((32)/8)=4  x=4,y=4,z=5  x+(√y)+z=4+(√4)+5=11

$$\left({i}\right)\Rightarrow\mathrm{x}=\frac{\mathrm{28}−\mathrm{y}}{\mathrm{y}+\mathrm{2}},\:\left({ii}\right)\Rightarrow\mathrm{x}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{28}−\mathrm{y}}{\mathrm{y}+\mathrm{2}}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}........\left(\mathrm{iv}\right) \\ $$$$\left(\mathrm{iii}\right)\Rightarrow\mathrm{y}=\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\left(\mathrm{iii}\right)\&\left(\mathrm{iv}\right)\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{28}−\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}}{\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}+\mathrm{2}}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\frac{\mathrm{28z}+\mathrm{84}−\mathrm{42}+\mathrm{2z}}{\mathrm{z}+\mathrm{3}}}{\frac{\mathrm{42}−\mathrm{2z}+\mathrm{2z}+\mathrm{6}}{\mathrm{z}+\mathrm{3}}}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{30z}+\mathrm{42}}{\mathrm{48}}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{5z}+\mathrm{7}}{\mathrm{8}}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\mathrm{5z}^{\mathrm{2}} +\mathrm{22z}+\mathrm{21}=\mathrm{296}−\mathrm{8z} \\ $$$$\:\:\:\:\:\:\:\mathrm{5z}^{\mathrm{2}} +\mathrm{30z}−\mathrm{275}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{z}^{\mathrm{2}} +\mathrm{6z}−\mathrm{55}=\mathrm{0} \\ $$$$\:\:\:\:\left(\:\mathrm{z}+\mathrm{11}\right)\left(\mathrm{z}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{z}=−\mathrm{11}\left({descardable}\right),\mathrm{5} \\ $$$$\mathrm{x}=\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}=\frac{\mathrm{37}−\mathrm{5}}{\mathrm{5}+\mathrm{3}}=\frac{\mathrm{32}}{\mathrm{8}}=\mathrm{4} \\ $$$$\mathrm{y}=\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}=\frac{\mathrm{42}−\mathrm{2}\left(\mathrm{5}\right)}{\mathrm{5}+\mathrm{3}}=\frac{\mathrm{32}}{\mathrm{8}}=\mathrm{4} \\ $$$$\mathrm{x}=\mathrm{4},\mathrm{y}=\mathrm{4},\mathrm{z}=\mathrm{5} \\ $$$$\mathrm{x}+\sqrt{\mathrm{y}}+\mathrm{z}=\mathrm{4}+\sqrt{\mathrm{4}}+\mathrm{5}=\mathrm{11} \\ $$$$\:\:\: \\ $$

Commented by bobhans last updated on 27/Jun/20

x= ((28−y)/(y+2)) = ((37−z)/(z+3)) ∧ y= ((42−2z)/(z+3))  ((28−(((42−2z)/(z+3))))/(((42−2z)/(z+3)) +2)) = ((37−z)/(z+3)) ⇒ ((30z+42)/((z+3)(48))) = ((37−z)/(z+3))  ((30z+42)/(48)) = ((37−z)/(z+3)) ⇒(5z+7)(z+3) = 296−8z  5z^2 +22z+21=296−8z  5z^2 +30z−275=0, z^2 +6z−55=0  (z+11)(z−5)=0 ⇒ { ((z=5)),((y=((42−10)/8)= 4)),((x=((28−4)/6)=4)) :}  ∴ x+(√y) +z = 4+2+5 = 11 ■

$$\mathrm{x}=\:\frac{\mathrm{28}−\mathrm{y}}{\mathrm{y}+\mathrm{2}}\:=\:\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}\:\wedge\:\mathrm{y}=\:\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\frac{\mathrm{28}−\left(\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}\right)}{\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}\:+\mathrm{2}}\:=\:\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}\:\Rightarrow\:\frac{\mathrm{30z}+\mathrm{42}}{\left(\mathrm{z}+\mathrm{3}\right)\left(\mathrm{48}\right)}\:=\:\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}} \\ $$$$\frac{\mathrm{30z}+\mathrm{42}}{\mathrm{48}}\:=\:\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}\:\Rightarrow\left(\mathrm{5z}+\mathrm{7}\right)\left(\mathrm{z}+\mathrm{3}\right)\:=\:\mathrm{296}−\mathrm{8z} \\ $$$$\mathrm{5z}^{\mathrm{2}} +\mathrm{22z}+\mathrm{21}=\mathrm{296}−\mathrm{8z} \\ $$$$\mathrm{5z}^{\mathrm{2}} +\mathrm{30z}−\mathrm{275}=\mathrm{0},\:\mathrm{z}^{\mathrm{2}} +\mathrm{6z}−\mathrm{55}=\mathrm{0} \\ $$$$\left(\mathrm{z}+\mathrm{11}\right)\left(\mathrm{z}−\mathrm{5}\right)=\mathrm{0}\:\Rightarrow\begin{cases}{\mathrm{z}=\mathrm{5}}\\{\mathrm{y}=\frac{\mathrm{42}−\mathrm{10}}{\mathrm{8}}=\:\mathrm{4}}\\{\mathrm{x}=\frac{\mathrm{28}−\mathrm{4}}{\mathrm{6}}=\mathrm{4}}\end{cases} \\ $$$$\therefore\:\mathrm{x}+\sqrt{\mathrm{y}}\:+\mathrm{z}\:=\:\mathrm{4}+\mathrm{2}+\mathrm{5}\:=\:\mathrm{11}\:\blacksquare \\ $$$$ \\ $$

Commented by Rasheed.Sindhi last updated on 26/Jun/20

Sir bobhans  x,y,z∈Z^+   Then how z=((303)/(13))?

$${Sir}\:{bobhans}\:\:\mathrm{x},\mathrm{y},\mathrm{z}\in\mathbb{Z}^{+} \\ $$$${Then}\:{how}\:\mathrm{z}=\frac{\mathrm{303}}{\mathrm{13}}? \\ $$

Commented by bramlex last updated on 26/Jun/20

it should be ⇔((30z+42)/(48)) = ((37−z)/(z+3))  ((5z+7)/8) = ((37−z)/(z+3)) ⇔ (5z+7)(z+3)=8(37−z)

$${it}\:{should}\:{be}\:\Leftrightarrow\frac{\mathrm{30}{z}+\mathrm{42}}{\mathrm{48}}\:=\:\frac{\mathrm{37}−{z}}{{z}+\mathrm{3}} \\ $$$$\frac{\mathrm{5}{z}+\mathrm{7}}{\mathrm{8}}\:=\:\frac{\mathrm{37}−{z}}{{z}+\mathrm{3}}\:\Leftrightarrow\:\left(\mathrm{5}{z}+\mathrm{7}\right)\left({z}+\mathrm{3}\right)=\mathrm{8}\left(\mathrm{37}−{z}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 26/Jun/20

x=((28−y)/(y+2))  y=((42−2z)/(z+3))  x=((37−z)/(z+3))  So,((37−z)/(z+3))=((28−((42−2z)/(z+3)))/(((42−2z)/(z+3))+2))⇒((37−z)/(z+3))=((30z+42)/(48))  ((296−8z)/(z+3))=5z+7   ⇒ 296−8z=5z^2 +22z+21  5z^2 +30z−275=0  ⇒z^2 +6z−55   ⇒z=5 or −11  but z≠−11  So;  x=4         y=4  so x+(√y)+z=11

$${x}=\frac{\mathrm{28}−{y}}{{y}+\mathrm{2}} \\ $$$${y}=\frac{\mathrm{42}−\mathrm{2}{z}}{{z}+\mathrm{3}} \\ $$$${x}=\frac{\mathrm{37}−{z}}{{z}+\mathrm{3}} \\ $$$$\mathrm{So},\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}=\frac{\mathrm{28}−\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}}{\frac{\mathrm{42}−\mathrm{2z}}{\mathrm{z}+\mathrm{3}}+\mathrm{2}}\Rightarrow\frac{\mathrm{37}−\mathrm{z}}{\mathrm{z}+\mathrm{3}}=\frac{\mathrm{30z}+\mathrm{42}}{\mathrm{48}} \\ $$$$\frac{\mathrm{296}−\mathrm{8z}}{\mathrm{z}+\mathrm{3}}=\mathrm{5z}+\mathrm{7}\:\:\:\Rightarrow\:\mathrm{296}−\mathrm{8z}=\mathrm{5z}^{\mathrm{2}} +\mathrm{22z}+\mathrm{21} \\ $$$$\mathrm{5z}^{\mathrm{2}} +\mathrm{30z}−\mathrm{275}=\mathrm{0}\:\:\Rightarrow{z}^{\mathrm{2}} +\mathrm{6}{z}−\mathrm{55}\:\:\:\Rightarrow\mathrm{z}=\mathrm{5}\:\mathrm{or}\:−\mathrm{11}\:\:\mathrm{but}\:\mathrm{z}\neq−\mathrm{11} \\ $$$$\mathrm{So};\:\:\mathrm{x}=\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\mathrm{y}=\mathrm{4} \\ $$$$\mathrm{so}\:\mathrm{x}+\sqrt{\mathrm{y}}+\mathrm{z}=\mathrm{11} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 26/Jun/20

Sir answer will be 11

$$\mathrm{Sir}\:\mathrm{answer}\:\mathrm{will}\:\mathrm{be}\:\mathrm{11} \\ $$

Commented by Dwaipayan Shikari last updated on 26/Jun/20

sir answer is 11. i think you have done some thing mistake

$${sir}\:{answer}\:{is}\:\mathrm{11}.\:{i}\:{think}\:{you}\:{have}\:{done}\:{some}\:{thing}\:{mistake} \\ $$

Commented by Dwaipayan Shikari last updated on 26/Jun/20

Ohhh  sir you put 2 instead of 5 while finding the value of y

$${Ohhh}\:\:{sir}\:{you}\:{put}\:\mathrm{2}\:{instead}\:{of}\:\mathrm{5}\:{while}\:{finding}\:{the}\:{value}\:{of}\:{y} \\ $$

Commented by Rasheed.Sindhi last updated on 26/Jun/20

Thank you sir for mentioning  mistake.Now I corrected it.Your  answer is also corret.

$$\mathcal{T}{hank}\:{you}\:{sir}\:{for}\:{mentioning} \\ $$$${mistake}.{Now}\:{I}\:{corrected}\:{it}.{Your} \\ $$$${answer}\:{is}\:{also}\:{corret}. \\ $$

Commented by bobhans last updated on 27/Jun/20

sorry sir Rashed. miscalculated

$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{Rashed}.\:\mathrm{miscalculated} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com