Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 100323 by bobhans last updated on 26/Jun/20

Solve x^2 y′′+2xy′−2y=0

$$\mathbb{S}\mathrm{olve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}''+\mathrm{2xy}'−\mathrm{2y}=\mathrm{0} \\ $$

Commented by bemath last updated on 26/Jun/20

since diff a power pushes down the  exponent by one unit, the form of  this eq suggest that we look for  possible solutions of the type y=x^n .  we optain the quadratic eq  n(n−1)+2n−2=0, this has roots  n=1; −2 so are solutions is   y = C_1 x + C_2 x^(−2)  ★

$$\mathrm{since}\:\mathrm{diff}\:\mathrm{a}\:\mathrm{power}\:\mathrm{pushes}\:\mathrm{down}\:\mathrm{the} \\ $$$$\mathrm{exponent}\:\mathrm{by}\:\mathrm{one}\:\mathrm{unit},\:\mathrm{the}\:\mathrm{form}\:\mathrm{of} \\ $$$$\mathrm{this}\:\mathrm{eq}\:\mathrm{suggest}\:\mathrm{that}\:\mathrm{we}\:\mathrm{look}\:\mathrm{for} \\ $$$$\mathrm{possible}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{type}\:\mathrm{y}=\mathrm{x}^{\mathrm{n}} . \\ $$$$\mathrm{we}\:\mathrm{optain}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{eq} \\ $$$$\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)+\mathrm{2n}−\mathrm{2}=\mathrm{0},\:\mathrm{this}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{n}=\mathrm{1};\:−\mathrm{2}\:\mathrm{so}\:\mathrm{are}\:\mathrm{solutions}\:\mathrm{is}\: \\ $$$$\mathrm{y}\:=\:\mathrm{C}_{\mathrm{1}} {x}\:+\:\mathrm{C}_{\mathrm{2}} {x}^{−\mathrm{2}} \:\bigstar\: \\ $$

Answered by mathmax by abdo last updated on 27/Jun/20

am^2  +(b−a)m +c =0 with a =1 ,b=2 and c =−2 ⇒  m^2 +m −2 =0 →Δ =1+8 =9 ⇒m_1 =((−1+3)/2) =1 and m_2 =((−1−3)/2) =−2 ⇒  y =ax +b x^(−2)  =ax +(b/x^2 )

$$\mathrm{am}^{\mathrm{2}} \:+\left(\mathrm{b}−\mathrm{a}\right)\mathrm{m}\:+\mathrm{c}\:=\mathrm{0}\:\mathrm{with}\:\mathrm{a}\:=\mathrm{1}\:,\mathrm{b}=\mathrm{2}\:\mathrm{and}\:\mathrm{c}\:=−\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{m}^{\mathrm{2}} +\mathrm{m}\:−\mathrm{2}\:=\mathrm{0}\:\rightarrow\Delta\:=\mathrm{1}+\mathrm{8}\:=\mathrm{9}\:\Rightarrow\mathrm{m}_{\mathrm{1}} =\frac{−\mathrm{1}+\mathrm{3}}{\mathrm{2}}\:=\mathrm{1}\:\mathrm{and}\:\mathrm{m}_{\mathrm{2}} =\frac{−\mathrm{1}−\mathrm{3}}{\mathrm{2}}\:=−\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{y}\:=\mathrm{ax}\:+\mathrm{b}\:\mathrm{x}^{−\mathrm{2}} \:=\mathrm{ax}\:+\frac{\mathrm{b}}{\mathrm{x}^{\mathrm{2}} } \\ $$

Commented by mathmax by abdo last updated on 27/Jun/20

sorry y =αx +β x^(−2)  =αx +(β/x^2 )

$$\mathrm{sorry}\:\mathrm{y}\:=\alpha\mathrm{x}\:+\beta\:\mathrm{x}^{−\mathrm{2}} \:=\alpha\mathrm{x}\:+\frac{\beta}{\mathrm{x}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com