Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 100158 by Algoritm last updated on 25/Jun/20

Answered by MJS last updated on 25/Jun/20

u=(√(x+3)) ⇔ x=u^2 −3∧u≥0  (u+4))(√(3u^2 −11))−3)=3u^2 −20  (u+4)(√(3u^2 −11))=3u^2 +3u−8  u^4 −u^3 −((38)/3)u^2 +((20)/3)u+40=0  trying factors of 40  ⇒ u_1 =3 ⇒ x_1 =6  u^3 +2u^2 −((20)/3)u−((40)/3)=0  trying ⇒ u_2 =−2 not possible because u≥0  u^2 −((20)/3)=0  ⇒ u_(3, 4) =±((2(√(15)))/3) ⇒ x_2 =((11)/3)

$${u}=\sqrt{{x}+\mathrm{3}}\:\Leftrightarrow\:{x}={u}^{\mathrm{2}} −\mathrm{3}\wedge{u}\geqslant\mathrm{0} \\ $$$$\left.\left(\left.{u}+\mathrm{4}\right)\right)\sqrt{\mathrm{3}{u}^{\mathrm{2}} −\mathrm{11}}−\mathrm{3}\right)=\mathrm{3}{u}^{\mathrm{2}} −\mathrm{20} \\ $$$$\left({u}+\mathrm{4}\right)\sqrt{\mathrm{3}{u}^{\mathrm{2}} −\mathrm{11}}=\mathrm{3}{u}^{\mathrm{2}} +\mathrm{3}{u}−\mathrm{8} \\ $$$${u}^{\mathrm{4}} −{u}^{\mathrm{3}} −\frac{\mathrm{38}}{\mathrm{3}}{u}^{\mathrm{2}} +\frac{\mathrm{20}}{\mathrm{3}}{u}+\mathrm{40}=\mathrm{0} \\ $$$$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{40} \\ $$$$\Rightarrow\:{u}_{\mathrm{1}} =\mathrm{3}\:\Rightarrow\:{x}_{\mathrm{1}} =\mathrm{6} \\ $$$${u}^{\mathrm{3}} +\mathrm{2}{u}^{\mathrm{2}} −\frac{\mathrm{20}}{\mathrm{3}}{u}−\frac{\mathrm{40}}{\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{trying}\:\Rightarrow\:{u}_{\mathrm{2}} =−\mathrm{2}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{because}\:{u}\geqslant\mathrm{0} \\ $$$${u}^{\mathrm{2}} −\frac{\mathrm{20}}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\:{u}_{\mathrm{3},\:\mathrm{4}} =\pm\frac{\mathrm{2}\sqrt{\mathrm{15}}}{\mathrm{3}}\:\Rightarrow\:{x}_{\mathrm{2}} =\frac{\mathrm{11}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com