Previous in Permutation and Combination Next in Permutation and Combination | ||
Question Number 218310 by mr W last updated on 06/Apr/25 | ||
![]() | ||
$$\mathrm{10}\:{couples}\:{are}\:{invited}\:{to}\:{a}\:{dinner} \\ $$$${and}\:{should}\:{be}\:{seated}\:{at}\:{a}\:{round}\:{table}. \\ $$$${in}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{host}\:{do} \\ $$$${this}, \\ $$$$\left.\mathrm{1}\right)\:{generally}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{the}\:{husband}\:{and}\:{the}\:{wife}\:{of} \\ $$$$\:\:\:\:\:{each}\:{couple}\:{should}\:{sit}\:{together}. \\ $$$$\left.\mathrm{3}\right)\:{if}\:{no}\:{two}\:{men}\:{should}\:{sit}\:{next} \\ $$$$\:\:\:\:\:{to}\:{each}\:{other}. \\ $$$$\left.\mathrm{4}\left.\right)\:{as}\:\mathrm{3}\right),\:{but}\:{two}\:{speicial}\:{couples}\: \\ $$$$\:\:\:\:\:{should}\:{not}\:{sit}\:{next}\:{to}\:{each}\:{other}. \\ $$$$\:\:\:\:\underline{\:{it}\:{means}\:}{that}\:{the}\:{husband}\:{from}\: \\ $$$$\:\:\:\:\:{couple}\:\mathrm{1}\:{may}\:{not}\:{sit}\:{next}\:{to}\:{the} \\ $$$$\:\:\:\:\:{wife}\:{from}\:{couple}\:\mathrm{2}\:{and}\:{the} \\ $$$$\:\:\:\:\:\:{husband}\:{from}\:{couple}\:\mathrm{2}\:{may}\:{not} \\ $$$$\:\:\:\:\:\:{sit}\:{next}\:{to}\:{the}\:{wife}\:{from}\:{couple}\:\mathrm{1}. \\ $$$$\:\:\:\:\:\:{but}\:{certainly}\:{the}\:{husbands}\:{of} \\ $$$$\:\:\:\:\:\:{both}\:{couples}\:{may}\:{sit}\:{next}\:{to}\:{their} \\ $$$$\:\:\:\:\:\:{own}\:{wifes}. \\ $$ | ||
Commented by nikif99 last updated on 08/Apr/25 | ||
![]() | ||
$$\underline{{General}\:{solution}} \\ $$$${if}\:{persons}\:=\:{N}\:\Rightarrow\:{couples}\:=\:{N}/\mathrm{2}\:=\:{C} \\ $$$$\left.\mathrm{1}\right)\:{N}! \\ $$$$\left.\mathrm{2}\right)\:{C}!×\mathrm{2}^{{C}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{C}!×\mathrm{2}^{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:\left({C}−\mathrm{2}\right)!×{N}×\left({N}−\mathrm{3}\right)×\mathrm{2}^{\mathrm{2}} \\ $$ | ||
Answered by nikif99 last updated on 08/Apr/25 | ||
![]() | ||
$${I}\:{try}\:{an}\:{answer}\:\left({figure}\:{follows}\right). \\ $$$$\mathrm{10}\:{couples}\:{are}\:\mathrm{20}\:{persons}. \\ $$$$\left.\mathrm{1}\right)\:{Arrangements}\:{of}\:\mathrm{20}\:{people},\:{even}\:{in} \\ $$$${circle},\:{with}\:{different}\:{places}\:{are}\:\mathrm{20}! \\ $$$$\left.\mathrm{2}\right)\:{Couples}\:{must}\:{sit}\:{in}\:{adjacent}\:{places}. \\ $$$${Consider}\:\mathrm{10}\:{twin}\:{seats}\:\left({see}\:{Table}\:{A}\right). \\ $$$${There}\:{are}\:\mathrm{10}!\:{ways}\:{for}\:\mathrm{10}\:{couples}. \\ $$$${Also},\:{couple}\:\mathrm{1}\:{can}\:{interchange}\:{seats} \\ $$$$\left(×\mathrm{2}\right),\:{couple}\:\mathrm{2}\:{can}\:{do}\:{the}\:{same}\:\left(×\mathrm{2}\right),... \\ $$$${till}\:{couple}\:\mathrm{10}\:\left(×\mathrm{2}\right),\:{e}.{g}.\:\mathrm{2}^{\mathrm{10}} .\:{Also},\:{all} \\ $$$${couples}\:{can}\:{shift}\:{one}\:{place}\:\left({see}\:{red}\right. \\ $$$$\left.{bracket}\right)\:\left(×\mathrm{2}\right).\:{Total}\:\mathrm{10}!\centerdot\mathrm{2}^{\mathrm{11}} \\ $$$$\left.\mathrm{3}\right)\:\left({suppose}\:{restriction}\:#\mathrm{2}\:{plus}...\right)\: \\ $$$$...{No}\:{two}\:{men}\:{in}\:{adjacent}\:{places}. \\ $$$${If}\:{the}\:{pattern}\:\left({mw}−{mw}−{mw}−{mw}...\right) \\ $$$$\left\{{where}\:{m}\:{man},\:{w}\:{woman}\right\}\:{changes}\:{to} \\ $$$$\left({mw}−{wm}−{wm}−{wm}...\right)\:{the}\:{circle} \\ $$$${doesn}'{t}\:{close}\:{normally}. \\ $$$$\mathrm{10}\:{couples}\:{are}\:{sitting}\:{in}\:\mathrm{10}\:{twin}\:{seats} \\ $$$${in}\:\mathrm{10}!\:{ways}\:\left({see}\:{Table}\:{B}\right).\:{Also},\:{the} \\ $$$${pattern}\:{can}\:{change}\:{to}\:\left({wm}−{wm}−{wm}...\right)\: \\ $$$$\left(×\mathrm{2}\right).\:{Also},\:{all}\:{couples}\:{can}\:{shift}\:{one} \\ $$$${place}\:\left({red}\:{bracket}\right)\:\left(×\mathrm{2}\right).\:{Total}\:\mathrm{10}!\centerdot\mathrm{2}^{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:{Restriction}\:\left(\mathrm{3}\right)\:{plus}\:{not}\:{two}\:{certain} \\ $$$${couples}\:{next}\:{to}\:{each}\:{other}. \\ $$$${Consider}\:{two}\:{couples},\:{red}\:{and}\:{blue},\:{not} \\ $$$${allowed}\:{in}\:{adjacent}\:{seats}\:\left({see}\:{Table}\:{C}\right). \\ $$$${Positions}\:\boldsymbol{{not}}\:{allowed}\:{for}\:{those}\:{two} \\ $$$${couples}\:{are}\:\mathrm{10}−\mathrm{1}\:\left(^{{a}} \right).\:{Remaining}\:\mathrm{8} \\ $$$${couples}\:{are}\:{sitted}\:{in}\:\mathrm{8}!\:{ways}\:\left(^{{b}} \right).\:{Also} \\ $$$${these}\:{two}\:{couples}\:{are}\:{not}\:{allowed}\:{at} \\ $$$${first}\:{and}\:{last}\:{positions},\:{where}\:{table} \\ $$$${ends}\:\left({see}\:{red}\:{bracket}\right),\:{so}\:{remaining} \\ $$$$\mathrm{8}\:{couples}\:{have}\:{another}\:\mathrm{8}!\:{ways}\:{of} \\ $$$${sitting}\:\left(^{{c}} \right).\:{Also},\:{couples}\:{can} \\ $$$${interchange}\:{seats}\:×\mathrm{2}\:\left(^{{d}} \right). \\ $$$${Knowing}\:{all}\:{arrangements}\:{are}\:\mathrm{10}!, \\ $$$${above}\:{exceptions}\:{are}\:{deducted}. \\ $$$$\mathrm{10}!−\underset{{d}} {\underbrace{\mathrm{2}}}\centerdot\underset{{a}} {\underbrace{\left(\mathrm{10}−\mathrm{1}\right)}\underset{{b}} {\left(\mathrm{10}−\mathrm{2}\right)!}}−\underset{{d}} {\underbrace{\mathrm{2}}}\centerdot\underset{{c}} {\underbrace{\left(\mathrm{10}−\mathrm{2}\right)!}}= \\ $$$$\mathrm{10}!−\left(\mathrm{10}−\mathrm{2}\right)!\left[\mathrm{2}\left(\mathrm{10}−\mathrm{1}\right)+\mathrm{2}\right]= \\ $$$$\mathrm{10}!−\mathrm{2}\centerdot\mathrm{10}\left(\mathrm{10}−\mathrm{2}\right)!=\mathrm{10}\centerdot\left(\mathrm{10}−\mathrm{3}\right)\left(\mathrm{10}−\mathrm{2}\right)! \\ $$$${Finally},\:{cases}\:{allowed}\:{must}\:×\mathrm{2}\:{for} \\ $$$${interchanging}\:{seats},\:×\mathrm{2}\:{for}\:{shifting} \\ $$$${one}\:{place}.\:{Total}\:\mathrm{8}!\centerdot\mathrm{10}\centerdot\mathrm{7}\centerdot\mathrm{2}^{\mathrm{2}} \\ $$ | ||
Commented by nikif99 last updated on 08/Apr/25 | ||
![]() | ||
Commented by mr W last updated on 19/Apr/25 | ||
![]() | ||
$${thanks}! \\ $$$${we}\:{should}\:{consider}\:{that}\:{the}\:{table} \\ $$$${is}\:{round}\:{and}\:{the}\:{seats}\:{are}\:{identical}. \\ $$$$ \\ $$$$\left.{as}\:{for}\:\mathrm{4}\right)\:{let}'{s}\:{look}\:{at}\:{the}\:{case}\:{with} \\ $$$${only}\:\mathrm{4}\:{couples}.\:{i}'{ll}\:{get} \\ $$$$\mathrm{4}!×\mathrm{3}!−\mathrm{2}×\mathrm{2}×\mathrm{3}!×\mathrm{3}!+\mathrm{2}×\mathrm{2}!×\mathrm{3}!=\mathrm{24}. \\ $$$${it}\:{should}\:{be}\:{able}\:{to}\:{check}\:{this} \\ $$$${manuelly}. \\ $$ | ||
Answered by mr W last updated on 19/Apr/25 | ||
![]() | ||
$$\left.\mathrm{1}\right) \\ $$$${arrange}\:\mathrm{20}\:{persons}\:{around}\:{round} \\ $$$${table}: \\ $$$$\left(\mathrm{20}−\mathrm{1}\right)!=\mathrm{19}! \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${arrange}\:\mathrm{10}\:{couples}\:{around}\:{round} \\ $$$${table},\:{there}\:{are}\:\left(\mathrm{10}−\mathrm{1}\right)!\:{ways}.\:{each} \\ $$$${couple}\:{has}\:\mathrm{2}\:{ways}\:{to}\:{change}\:{the} \\ $$$${positions}\:{of}\:{husband}\:{and}\:{wife}: \\ $$$$\left(\mathrm{10}−\mathrm{1}\right)!×\mathrm{2}^{\mathrm{10}} =\mathrm{9}!×\mathrm{2}^{\mathrm{10}} \\ $$$$ \\ $$$$\left.\mathrm{3}\right) \\ $$$${to}\:{arrange}\:\mathrm{10}\:{wivesaround}\:{round} \\ $$$${table}\:{there}\:{are}\:\left(\mathrm{10}−\mathrm{1}\right)!\:{ways}.\:{to} \\ $$$${arrange}\:{the}\:\mathrm{10}\:{husbands}\:{there}\:{are} \\ $$$$\mathrm{10}!\:{ways}: \\ $$$$\left(\mathrm{10}−\mathrm{1}\right)!×\mathrm{10}!=\mathrm{9}!×\mathrm{10}!=\mathrm{90}×\mathrm{8}!×\mathrm{9}! \\ $$$$ \\ $$$$\left.\mathrm{4}\right) \\ $$$$\mathrm{10}!×\mathrm{9}!−\mathrm{2}×\mathrm{2}×\mathrm{9}!×\mathrm{9}!+\mathrm{2}×\mathrm{8}!×\mathrm{9}! \\ $$$$=\mathrm{56}×\mathrm{8}!×\mathrm{9}! \\ $$ | ||