Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 218310 by mr W last updated on 06/Apr/25

10 couples are invited to a dinner  and should be seated at a round table.  in how many ways can the host do  this,  1) generally.  2) if the husband and the wife of       each couple should sit together.  3) if no two men should sit next       to each other.  4) as 3), but two speicial couples        should not sit next to each other.       it means that the husband from        couple 1 may not sit next to the       wife from couple 2 and the        husband from couple 2 may not        sit next to the wife from couple 1.        but certainly the husbands of        both couples may sit next to their        own wifes.

$$\mathrm{10}\:{couples}\:{are}\:{invited}\:{to}\:{a}\:{dinner} \\ $$$${and}\:{should}\:{be}\:{seated}\:{at}\:{a}\:{round}\:{table}. \\ $$$${in}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{host}\:{do} \\ $$$${this}, \\ $$$$\left.\mathrm{1}\right)\:{generally}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{the}\:{husband}\:{and}\:{the}\:{wife}\:{of} \\ $$$$\:\:\:\:\:{each}\:{couple}\:{should}\:{sit}\:{together}. \\ $$$$\left.\mathrm{3}\right)\:{if}\:{no}\:{two}\:{men}\:{should}\:{sit}\:{next} \\ $$$$\:\:\:\:\:{to}\:{each}\:{other}. \\ $$$$\left.\mathrm{4}\left.\right)\:{as}\:\mathrm{3}\right),\:{but}\:{two}\:{speicial}\:{couples}\: \\ $$$$\:\:\:\:\:{should}\:{not}\:{sit}\:{next}\:{to}\:{each}\:{other}. \\ $$$$\:\:\:\:\underline{\:{it}\:{means}\:}{that}\:{the}\:{husband}\:{from}\: \\ $$$$\:\:\:\:\:{couple}\:\mathrm{1}\:{may}\:{not}\:{sit}\:{next}\:{to}\:{the} \\ $$$$\:\:\:\:\:{wife}\:{from}\:{couple}\:\mathrm{2}\:{and}\:{the} \\ $$$$\:\:\:\:\:\:{husband}\:{from}\:{couple}\:\mathrm{2}\:{may}\:{not} \\ $$$$\:\:\:\:\:\:{sit}\:{next}\:{to}\:{the}\:{wife}\:{from}\:{couple}\:\mathrm{1}. \\ $$$$\:\:\:\:\:\:{but}\:{certainly}\:{the}\:{husbands}\:{of} \\ $$$$\:\:\:\:\:\:{both}\:{couples}\:{may}\:{sit}\:{next}\:{to}\:{their} \\ $$$$\:\:\:\:\:\:{own}\:{wifes}. \\ $$

Commented by nikif99 last updated on 08/Apr/25

General solution  if persons = N ⇒ couples = N/2 = C  1) N!  2) C!×2^(C+1)   3) C!×2^2   4) (C−2)!×N×(N−3)×2^2

$$\underline{{General}\:{solution}} \\ $$$${if}\:{persons}\:=\:{N}\:\Rightarrow\:{couples}\:=\:{N}/\mathrm{2}\:=\:{C} \\ $$$$\left.\mathrm{1}\right)\:{N}! \\ $$$$\left.\mathrm{2}\right)\:{C}!×\mathrm{2}^{{C}+\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{C}!×\mathrm{2}^{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:\left({C}−\mathrm{2}\right)!×{N}×\left({N}−\mathrm{3}\right)×\mathrm{2}^{\mathrm{2}} \\ $$

Answered by nikif99 last updated on 08/Apr/25

I try an answer (figure follows).  10 couples are 20 persons.  1) Arrangements of 20 people, even in  circle, with different places are 20!  2) Couples must sit in adjacent places.  Consider 10 twin seats (see Table A).  There are 10! ways for 10 couples.  Also, couple 1 can interchange seats  (×2), couple 2 can do the same (×2),...  till couple 10 (×2), e.g. 2^(10) . Also, all  couples can shift one place (see red  bracket) (×2). Total 10!∙2^(11)   3) (suppose restriction #2 plus...)   ...No two men in adjacent places.  If the pattern (mw−mw−mw−mw...)  {where m man, w woman} changes to  (mw−wm−wm−wm...) the circle  doesn′t close normally.  10 couples are sitting in 10 twin seats  in 10! ways (see Table B). Also, the  pattern can change to (wm−wm−wm...)   (×2). Also, all couples can shift one  place (red bracket) (×2). Total 10!∙2^2   4) Restriction (3) plus not two certain  couples next to each other.  Consider two couples, red and blue, not  allowed in adjacent seats (see Table C).  Positions not allowed for those two  couples are 10−1 (^a ). Remaining 8  couples are sitted in 8! ways (^b ). Also  these two couples are not allowed at  first and last positions, where table  ends (see red bracket), so remaining  8 couples have another 8! ways of  sitting (^c ). Also, couples can  interchange seats ×2 (^d ).  Knowing all arrangements are 10!,  above exceptions are deducted.  10!−2_(d) ∙(10−1)_(a) (10−2)!_(b) −2_(d) ∙(10−2)!_(c) =  10!−(10−2)![2(10−1)+2]=  10!−2∙10(10−2)!=10∙(10−3)(10−2)!  Finally, cases allowed must ×2 for  interchanging seats, ×2 for shifting  one place. Total 8!∙10∙7∙2^2

$${I}\:{try}\:{an}\:{answer}\:\left({figure}\:{follows}\right). \\ $$$$\mathrm{10}\:{couples}\:{are}\:\mathrm{20}\:{persons}. \\ $$$$\left.\mathrm{1}\right)\:{Arrangements}\:{of}\:\mathrm{20}\:{people},\:{even}\:{in} \\ $$$${circle},\:{with}\:{different}\:{places}\:{are}\:\mathrm{20}! \\ $$$$\left.\mathrm{2}\right)\:{Couples}\:{must}\:{sit}\:{in}\:{adjacent}\:{places}. \\ $$$${Consider}\:\mathrm{10}\:{twin}\:{seats}\:\left({see}\:{Table}\:{A}\right). \\ $$$${There}\:{are}\:\mathrm{10}!\:{ways}\:{for}\:\mathrm{10}\:{couples}. \\ $$$${Also},\:{couple}\:\mathrm{1}\:{can}\:{interchange}\:{seats} \\ $$$$\left(×\mathrm{2}\right),\:{couple}\:\mathrm{2}\:{can}\:{do}\:{the}\:{same}\:\left(×\mathrm{2}\right),... \\ $$$${till}\:{couple}\:\mathrm{10}\:\left(×\mathrm{2}\right),\:{e}.{g}.\:\mathrm{2}^{\mathrm{10}} .\:{Also},\:{all} \\ $$$${couples}\:{can}\:{shift}\:{one}\:{place}\:\left({see}\:{red}\right. \\ $$$$\left.{bracket}\right)\:\left(×\mathrm{2}\right).\:{Total}\:\mathrm{10}!\centerdot\mathrm{2}^{\mathrm{11}} \\ $$$$\left.\mathrm{3}\right)\:\left({suppose}\:{restriction}\:#\mathrm{2}\:{plus}...\right)\: \\ $$$$...{No}\:{two}\:{men}\:{in}\:{adjacent}\:{places}. \\ $$$${If}\:{the}\:{pattern}\:\left({mw}−{mw}−{mw}−{mw}...\right) \\ $$$$\left\{{where}\:{m}\:{man},\:{w}\:{woman}\right\}\:{changes}\:{to} \\ $$$$\left({mw}−{wm}−{wm}−{wm}...\right)\:{the}\:{circle} \\ $$$${doesn}'{t}\:{close}\:{normally}. \\ $$$$\mathrm{10}\:{couples}\:{are}\:{sitting}\:{in}\:\mathrm{10}\:{twin}\:{seats} \\ $$$${in}\:\mathrm{10}!\:{ways}\:\left({see}\:{Table}\:{B}\right).\:{Also},\:{the} \\ $$$${pattern}\:{can}\:{change}\:{to}\:\left({wm}−{wm}−{wm}...\right)\: \\ $$$$\left(×\mathrm{2}\right).\:{Also},\:{all}\:{couples}\:{can}\:{shift}\:{one} \\ $$$${place}\:\left({red}\:{bracket}\right)\:\left(×\mathrm{2}\right).\:{Total}\:\mathrm{10}!\centerdot\mathrm{2}^{\mathrm{2}} \\ $$$$\left.\mathrm{4}\right)\:{Restriction}\:\left(\mathrm{3}\right)\:{plus}\:{not}\:{two}\:{certain} \\ $$$${couples}\:{next}\:{to}\:{each}\:{other}. \\ $$$${Consider}\:{two}\:{couples},\:{red}\:{and}\:{blue},\:{not} \\ $$$${allowed}\:{in}\:{adjacent}\:{seats}\:\left({see}\:{Table}\:{C}\right). \\ $$$${Positions}\:\boldsymbol{{not}}\:{allowed}\:{for}\:{those}\:{two} \\ $$$${couples}\:{are}\:\mathrm{10}−\mathrm{1}\:\left(^{{a}} \right).\:{Remaining}\:\mathrm{8} \\ $$$${couples}\:{are}\:{sitted}\:{in}\:\mathrm{8}!\:{ways}\:\left(^{{b}} \right).\:{Also} \\ $$$${these}\:{two}\:{couples}\:{are}\:{not}\:{allowed}\:{at} \\ $$$${first}\:{and}\:{last}\:{positions},\:{where}\:{table} \\ $$$${ends}\:\left({see}\:{red}\:{bracket}\right),\:{so}\:{remaining} \\ $$$$\mathrm{8}\:{couples}\:{have}\:{another}\:\mathrm{8}!\:{ways}\:{of} \\ $$$${sitting}\:\left(^{{c}} \right).\:{Also},\:{couples}\:{can} \\ $$$${interchange}\:{seats}\:×\mathrm{2}\:\left(^{{d}} \right). \\ $$$${Knowing}\:{all}\:{arrangements}\:{are}\:\mathrm{10}!, \\ $$$${above}\:{exceptions}\:{are}\:{deducted}. \\ $$$$\mathrm{10}!−\underset{{d}} {\underbrace{\mathrm{2}}}\centerdot\underset{{a}} {\underbrace{\left(\mathrm{10}−\mathrm{1}\right)}\underset{{b}} {\left(\mathrm{10}−\mathrm{2}\right)!}}−\underset{{d}} {\underbrace{\mathrm{2}}}\centerdot\underset{{c}} {\underbrace{\left(\mathrm{10}−\mathrm{2}\right)!}}= \\ $$$$\mathrm{10}!−\left(\mathrm{10}−\mathrm{2}\right)!\left[\mathrm{2}\left(\mathrm{10}−\mathrm{1}\right)+\mathrm{2}\right]= \\ $$$$\mathrm{10}!−\mathrm{2}\centerdot\mathrm{10}\left(\mathrm{10}−\mathrm{2}\right)!=\mathrm{10}\centerdot\left(\mathrm{10}−\mathrm{3}\right)\left(\mathrm{10}−\mathrm{2}\right)! \\ $$$${Finally},\:{cases}\:{allowed}\:{must}\:×\mathrm{2}\:{for} \\ $$$${interchanging}\:{seats},\:×\mathrm{2}\:{for}\:{shifting} \\ $$$${one}\:{place}.\:{Total}\:\mathrm{8}!\centerdot\mathrm{10}\centerdot\mathrm{7}\centerdot\mathrm{2}^{\mathrm{2}} \\ $$

Commented by nikif99 last updated on 08/Apr/25

Commented by mr W last updated on 19/Apr/25

thanks!  we should consider that the table  is round and the seats are identical.    as for 4) let′s look at the case with  only 4 couples. i′ll get  4!×3!−2×2×3!×3!+2×2!×3!=24.  it should be able to check this  manuelly.

$${thanks}! \\ $$$${we}\:{should}\:{consider}\:{that}\:{the}\:{table} \\ $$$${is}\:{round}\:{and}\:{the}\:{seats}\:{are}\:{identical}. \\ $$$$ \\ $$$$\left.{as}\:{for}\:\mathrm{4}\right)\:{let}'{s}\:{look}\:{at}\:{the}\:{case}\:{with} \\ $$$${only}\:\mathrm{4}\:{couples}.\:{i}'{ll}\:{get} \\ $$$$\mathrm{4}!×\mathrm{3}!−\mathrm{2}×\mathrm{2}×\mathrm{3}!×\mathrm{3}!+\mathrm{2}×\mathrm{2}!×\mathrm{3}!=\mathrm{24}. \\ $$$${it}\:{should}\:{be}\:{able}\:{to}\:{check}\:{this} \\ $$$${manuelly}. \\ $$

Answered by mr W last updated on 19/Apr/25

1)  arrange 20 persons around round  table:  (20−1)!=19!    2)  arrange 10 couples around round  table, there are (10−1)! ways. each  couple has 2 ways to change the  positions of husband and wife:  (10−1)!×2^(10) =9!×2^(10)     3)  to arrange 10 wivesaround round  table there are (10−1)! ways. to  arrange the 10 husbands there are  10! ways:  (10−1)!×10!=9!×10!=90×8!×9!    4)  10!×9!−2×2×9!×9!+2×8!×9!  =56×8!×9!

$$\left.\mathrm{1}\right) \\ $$$${arrange}\:\mathrm{20}\:{persons}\:{around}\:{round} \\ $$$${table}: \\ $$$$\left(\mathrm{20}−\mathrm{1}\right)!=\mathrm{19}! \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${arrange}\:\mathrm{10}\:{couples}\:{around}\:{round} \\ $$$${table},\:{there}\:{are}\:\left(\mathrm{10}−\mathrm{1}\right)!\:{ways}.\:{each} \\ $$$${couple}\:{has}\:\mathrm{2}\:{ways}\:{to}\:{change}\:{the} \\ $$$${positions}\:{of}\:{husband}\:{and}\:{wife}: \\ $$$$\left(\mathrm{10}−\mathrm{1}\right)!×\mathrm{2}^{\mathrm{10}} =\mathrm{9}!×\mathrm{2}^{\mathrm{10}} \\ $$$$ \\ $$$$\left.\mathrm{3}\right) \\ $$$${to}\:{arrange}\:\mathrm{10}\:{wivesaround}\:{round} \\ $$$${table}\:{there}\:{are}\:\left(\mathrm{10}−\mathrm{1}\right)!\:{ways}.\:{to} \\ $$$${arrange}\:{the}\:\mathrm{10}\:{husbands}\:{there}\:{are} \\ $$$$\mathrm{10}!\:{ways}: \\ $$$$\left(\mathrm{10}−\mathrm{1}\right)!×\mathrm{10}!=\mathrm{9}!×\mathrm{10}!=\mathrm{90}×\mathrm{8}!×\mathrm{9}! \\ $$$$ \\ $$$$\left.\mathrm{4}\right) \\ $$$$\mathrm{10}!×\mathrm{9}!−\mathrm{2}×\mathrm{2}×\mathrm{9}!×\mathrm{9}!+\mathrm{2}×\mathrm{8}!×\mathrm{9}! \\ $$$$=\mathrm{56}×\mathrm{8}!×\mathrm{9}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com