Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201764 by hardmath last updated on 11/Dec/23

1. y = tgx − ctgx  →  y^′  = ?  2. y = (1 + x^2 ) arctgx → y^′  = ?  3. y = cos^4  x → y^′  = ?  4.  { ((x = 2t)),((y = 3t^2  − 5t)) :}   →   x^′  , y^′  = ?

$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\ $$

Answered by Calculusboy last updated on 11/Dec/23

Solution: (1)  y=tgx−ctgx  if  tgx=tanx  and ctgx=cotx  y′=sec^2 x+cosec^2 x  (2) by using product rule  if tgx=tanx  y′=[(1+x^2 )(d/dx)arctgx+arctgx(d/dx)(1+^2 )]  y′=[(1+x^2 )×(1/(1+x^2 ))+2xarctgx]  y′=1+2x arctgx  (3)y=cos^4 x  let p=cosx  y=(cosx)^4     (dp/dx)=−sinx  y=p^4     (dy/dp)=4p^3   ⇔  y′=4cos^3 x×−sinx=−4cos^3 xsinx  y′=−4cos^3 xsinx

$$\boldsymbol{{Solution}}:\:\left(\mathrm{1}\right)\:\:\boldsymbol{{y}}=\boldsymbol{{tgx}}−\boldsymbol{{ctgx}}\:\:\boldsymbol{{if}}\:\:\boldsymbol{{tgx}}=\boldsymbol{{tanx}}\:\:\boldsymbol{{and}}\:\boldsymbol{{ctgx}}=\boldsymbol{{cotx}} \\ $$$$\boldsymbol{{y}}'=\boldsymbol{{sec}}^{\mathrm{2}} \boldsymbol{{x}}+\boldsymbol{{cosec}}^{\mathrm{2}} \boldsymbol{{x}} \\ $$$$\left(\mathrm{2}\right)\:\boldsymbol{{by}}\:\boldsymbol{{using}}\:\boldsymbol{{product}}\:\boldsymbol{{rule}}\:\:\boldsymbol{{if}}\:\boldsymbol{{tgx}}=\boldsymbol{{tanx}} \\ $$$$\boldsymbol{{y}}'=\left[\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\boldsymbol{{arctgx}}+\boldsymbol{{arctgx}}\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\mathrm{1}+^{\mathrm{2}} \right)\right] \\ $$$$\boldsymbol{{y}}'=\left[\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)×\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }+\mathrm{2}\boldsymbol{{xarctgx}}\right] \\ $$$$\boldsymbol{{y}}'=\mathrm{1}+\mathrm{2}\boldsymbol{{x}}\:\boldsymbol{{arctgx}} \\ $$$$\left(\mathrm{3}\right)\boldsymbol{{y}}=\boldsymbol{{cos}}^{\mathrm{4}} \boldsymbol{{x}}\:\:\boldsymbol{{let}}\:\boldsymbol{{p}}=\boldsymbol{{cosx}} \\ $$$$\boldsymbol{{y}}=\left(\boldsymbol{{cosx}}\right)^{\mathrm{4}} \:\:\:\:\frac{\boldsymbol{{dp}}}{\boldsymbol{{dx}}}=−\boldsymbol{{sinx}} \\ $$$$\boldsymbol{{y}}=\boldsymbol{{p}}^{\mathrm{4}} \:\:\:\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dp}}}=\mathrm{4}\boldsymbol{{p}}^{\mathrm{3}} \:\:\Leftrightarrow\:\:\boldsymbol{{y}}'=\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}×−\boldsymbol{{sinx}}=−\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{xsinx}} \\ $$$$\boldsymbol{{y}}'=−\mathrm{4}\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{xsinx}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Calculusboy last updated on 12/Dec/23

you  are welcome

$$\boldsymbol{{you}}\:\:\boldsymbol{{are}}\:\boldsymbol{{welcome}} \\ $$

Commented by hardmath last updated on 12/Dec/23

thank you ser

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com