Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45735 by  last updated on 16/Oct/18

∫_α ^β (1/((x−α)(β−x)))dx  =?   β>α

$$\int_{\alpha} ^{\beta} \frac{\mathrm{1}}{\left({x}−\alpha\right)\left(\beta−{x}\right)}{dx}\:\:=?\:\:\:\beta>\alpha \\ $$

Commented by maxmathsup by imad last updated on 17/Oct/18

I =−∫_α ^β      (dx/((x−α)(x−β))) =−(1/(α−β))∫_α ^β { (1/(x−α)) −(1/(x−β))}  =(1/(β−α)) [ln∣((x−α)/(x−β))∣]_α ^β =(1/(β−α)){ln(β−α)−ln(0^+ )−ln(0^+ )+ln(β−α)}  =(1/(β−α)){ 2ln(β−α) +∞} =+∞  and this integral diverves to+∞=!.

$${I}\:=−\int_{\alpha} ^{\beta} \:\:\:\:\:\frac{{dx}}{\left({x}−\alpha\right)\left({x}−\beta\right)}\:=−\frac{\mathrm{1}}{\alpha−\beta}\int_{\alpha} ^{\beta} \left\{\:\frac{\mathrm{1}}{{x}−\alpha}\:−\frac{\mathrm{1}}{{x}−\beta}\right\} \\ $$$$=\frac{\mathrm{1}}{\beta−\alpha}\:\left[{ln}\mid\frac{{x}−\alpha}{{x}−\beta}\mid\right]_{\alpha} ^{\beta} =\frac{\mathrm{1}}{\beta−\alpha}\left\{{ln}\left(\beta−\alpha\right)−{ln}\left(\mathrm{0}^{+} \right)−{ln}\left(\mathrm{0}^{+} \right)+{ln}\left(\beta−\alpha\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\beta−\alpha}\left\{\:\mathrm{2}{ln}\left(\beta−\alpha\right)\:+\infty\right\}\:=+\infty\:\:{and}\:{this}\:{integral}\:{diverves}\:{to}+\infty=!. \\ $$

Answered by ARVIND DADHICH last updated on 16/Oct/18

(1/(β−α))∫_α ^β ((β−x+x−α)/((x−α)(β−x)))dx  (1/(β−α))∫_α ^β (1/(x−α))+(1/(β−x))dx  (1/(β−α))[ln(x−α)+ln(β−x)]_α ^β   (1/(β−α))[ln(β−α)−ln(β−α)]  =0

$$\frac{\mathrm{1}}{\beta−\alpha}\int_{\alpha} ^{\beta} \frac{\beta−{x}+{x}−\alpha}{\left({x}−\alpha\right)\left(\beta−{x}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{\beta−\alpha}\int_{\alpha} ^{\beta} \frac{\mathrm{1}}{{x}−\alpha}+\frac{\mathrm{1}}{\beta−{x}}{dx} \\ $$$$\frac{\mathrm{1}}{\beta−\alpha}\left[{ln}\left({x}−\alpha\right)+{ln}\left(\beta−{x}\right)\right]_{\alpha} ^{\beta} \\ $$$$\frac{\mathrm{1}}{\beta−\alpha}\left[{ln}\left(\beta−\alpha\right)−{ln}\left(\beta−\alpha\right)\right] \\ $$$$=\mathrm{0} \\ $$

Commented by  last updated on 16/Oct/18

sir ln0=0 this is right

$${sir}\:{ln}\mathrm{0}=\mathrm{0}\:{this}\:{is}\:{right} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18

ln(0)=−∞

$${ln}\left(\mathrm{0}\right)=−\infty\:\:\:\: \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18

for both α and β denominator is zero  so it is improper intregal...  =lim^(lim_(k→β) ) _(h→α) ∫_h ^k (dx/((x−α)(β−x)))

$${for}\:{both}\:\alpha\:{and}\:\beta\:{denominator}\:{is}\:{zero} \\ $$$${so}\:{it}\:{is}\:{improper}\:{intregal}... \\ $$$$=\underset{{h}\rightarrow\alpha} {\mathrm{li}\overset{\underset{{k}\rightarrow\beta} {\mathrm{lim}}} {\mathrm{m}}}\int_{{h}} ^{{k}} \frac{{dx}}{\left({x}−\alpha\right)\left(\beta−{x}\right)} \\ $$$$ \\ $$

Commented by  last updated on 17/Oct/18

thanks sir

$${thanks}\:{sir} \\ $$

Answered by MJS last updated on 16/Oct/18

∫(dx/((x−α)(β−x)))=−∫(dx/((x−α)(x−β)))=  =(1/(β−α))∫((1/(x−α))−(1/(x−β)))dx=  =(1/(β−α))(ln ∣x−α∣ −ln ∣x−β∣)=F(x)  F(β−δ)−F(α+δ)=(1/(β−α))(ln ∣β−α−δ∣ −ln ∣δ∣ −ln ∣δ∣ +ln ∣α−β+δ∣)=  =(2/(β−α))(ln ∣α−β+δ∣ −ln ∣δ∣)  lim_(δ→0)  (2/(β−α))(ln ∣α−β+δ∣ −ln ∣δ∣)=+∞

$$\int\frac{{dx}}{\left({x}−\alpha\right)\left(\beta−{x}\right)}=−\int\frac{{dx}}{\left({x}−\alpha\right)\left({x}−\beta\right)}= \\ $$$$=\frac{\mathrm{1}}{\beta−\alpha}\int\left(\frac{\mathrm{1}}{{x}−\alpha}−\frac{\mathrm{1}}{{x}−\beta}\right){dx}= \\ $$$$=\frac{\mathrm{1}}{\beta−\alpha}\left(\mathrm{ln}\:\mid{x}−\alpha\mid\:−\mathrm{ln}\:\mid{x}−\beta\mid\right)={F}\left({x}\right) \\ $$$${F}\left(\beta−\delta\right)−{F}\left(\alpha+\delta\right)=\frac{\mathrm{1}}{\beta−\alpha}\left(\mathrm{ln}\:\mid\beta−\alpha−\delta\mid\:−\mathrm{ln}\:\mid\delta\mid\:−\mathrm{ln}\:\mid\delta\mid\:+\mathrm{ln}\:\mid\alpha−\beta+\delta\mid\right)= \\ $$$$=\frac{\mathrm{2}}{\beta−\alpha}\left(\mathrm{ln}\:\mid\alpha−\beta+\delta\mid\:−\mathrm{ln}\:\mid\delta\mid\right) \\ $$$$\underset{\delta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}}{\beta−\alpha}\left(\mathrm{ln}\:\mid\alpha−\beta+\delta\mid\:−\mathrm{ln}\:\mid\delta\mid\right)=+\infty \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com