Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63433 by minh2001 last updated on 04/Jul/19

∫_1 ^x x^2 −3x(√x)dx =((−716)/(15))  then calculate ∫_x ^(x+1) (1/(x+3))dx

$$\underset{\mathrm{1}} {\overset{{x}} {\int}}{x}^{\mathrm{2}} −\mathrm{3}{x}\sqrt{{x}}{dx}\:=\frac{−\mathrm{716}}{\mathrm{15}} \\ $$$${then}\:{calculate}\:\underset{{x}} {\overset{{x}+\mathrm{1}} {\int}}\frac{\mathrm{1}}{{x}+\mathrm{3}}{dx} \\ $$

Commented by MJS last updated on 04/Jul/19

the borders have to be independent of the  integral variable

$$\mathrm{the}\:\mathrm{borders}\:\mathrm{have}\:\mathrm{to}\:\mathrm{be}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{integral}\:\mathrm{variable} \\ $$

Answered by MJS last updated on 04/Jul/19

∫_1 ^t (x^2 −3x(√x))dx=−((716)/(15))  (1/3)t^3 −(6/5)t^(5/2) +((13)/(15))=−((716)/(15))  t^3 −((18)/5)t^(5/2) +((729)/5)=0  t=u^2   u^6 −((18)/5)u^5 +((729)/5)=0  ⇒ u_1 =u_2 =3 ⇒ t=9  ∫_9 ^(10) (dx/(x+3))=ln ((13)/(12))

$$\underset{\mathrm{1}} {\overset{{t}} {\int}}\left({x}^{\mathrm{2}} −\mathrm{3}{x}\sqrt{{x}}\right){dx}=−\frac{\mathrm{716}}{\mathrm{15}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} −\frac{\mathrm{6}}{\mathrm{5}}{t}^{\frac{\mathrm{5}}{\mathrm{2}}} +\frac{\mathrm{13}}{\mathrm{15}}=−\frac{\mathrm{716}}{\mathrm{15}} \\ $$$${t}^{\mathrm{3}} −\frac{\mathrm{18}}{\mathrm{5}}{t}^{\frac{\mathrm{5}}{\mathrm{2}}} +\frac{\mathrm{729}}{\mathrm{5}}=\mathrm{0} \\ $$$${t}={u}^{\mathrm{2}} \\ $$$${u}^{\mathrm{6}} −\frac{\mathrm{18}}{\mathrm{5}}{u}^{\mathrm{5}} +\frac{\mathrm{729}}{\mathrm{5}}=\mathrm{0} \\ $$$$\Rightarrow\:{u}_{\mathrm{1}} ={u}_{\mathrm{2}} =\mathrm{3}\:\Rightarrow\:{t}=\mathrm{9} \\ $$$$\underset{\mathrm{9}} {\overset{\mathrm{10}} {\int}}\frac{{dx}}{{x}+\mathrm{3}}=\mathrm{ln}\:\frac{\mathrm{13}}{\mathrm{12}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com