Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69623 by aliesam last updated on 25/Sep/19

∫(1/((√x) + (x)^(1/3) )) dx

$$\int\frac{\mathrm{1}}{\sqrt{{x}}\:+\:\sqrt[{\mathrm{3}}]{{x}}}\:{dx} \\ $$

Answered by MJS last updated on 25/Sep/19

we had this before...  ∫(dx/(x^(1/2) +x^(1/3) ))=       [t=x^(1/6)  → dx=6x^(5/6) dt]  =6∫(t^3 /(t+1))dt=6∫(t^2 −t+1−(1/(t+1)))dt=  =2t^3 −3t^2 +6t−6ln (t+1) =  =2x^(1/2) −3x^(1/3) +6x^(1/6) −6ln (x^(1/6) +1) +C

$$\mathrm{we}\:\mathrm{had}\:\mathrm{this}\:\mathrm{before}... \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{1}/\mathrm{2}} +{x}^{\mathrm{1}/\mathrm{3}} }= \\ $$$$\:\:\:\:\:\left[{t}={x}^{\mathrm{1}/\mathrm{6}} \:\rightarrow\:{dx}=\mathrm{6}{x}^{\mathrm{5}/\mathrm{6}} {dt}\right] \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{3}} }{{t}+\mathrm{1}}{dt}=\mathrm{6}\int\left({t}^{\mathrm{2}} −{t}+\mathrm{1}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}= \\ $$$$=\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{6}{t}−\mathrm{6ln}\:\left({t}+\mathrm{1}\right)\:= \\ $$$$=\mathrm{2}{x}^{\mathrm{1}/\mathrm{2}} −\mathrm{3}{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{6}{x}^{\mathrm{1}/\mathrm{6}} −\mathrm{6ln}\:\left({x}^{\mathrm{1}/\mathrm{6}} +\mathrm{1}\right)\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com