Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92949 by Ar Brandon last updated on 09/May/20

∫(1/x)sin((1/x)) dx

$$\int\frac{\mathrm{1}}{\mathrm{x}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx} \\ $$

Commented by mathmax by abdo last updated on 10/May/20

I =∫ (1/x)sin((1/x))dx  changement (1/x)=t give  I =∫t sint (−(dt/t^2 )) =−∫  ((sint)/t)dt  we have sint =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))t^(2n+1)   ⇒((sint)/t) =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) t^(2n)  ⇒∫ ((sint)/t)dt =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)×(2n+1)!))t^(2n+1)  +c  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)(2n+1)!))×(1/x^(2n+1) ) +c  =1−(1/(3×3!))×(1/x^3 ) +(1/(5×5!))×(1/x^5 )−.... +c

$${I}\:=\int\:\frac{\mathrm{1}}{{x}}{sin}\left(\frac{\mathrm{1}}{{x}}\right){dx}\:\:{changement}\:\frac{\mathrm{1}}{{x}}={t}\:{give} \\ $$$${I}\:=\int{t}\:{sint}\:\left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right)\:=−\int\:\:\frac{{sint}}{{t}}{dt}\:\:{we}\:{have}\:{sint}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{t}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\Rightarrow\frac{{sint}}{{t}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:{t}^{\mathrm{2}{n}} \:\Rightarrow\int\:\frac{{sint}}{{t}}{dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)×\left(\mathrm{2}{n}+\mathrm{1}\right)!}{t}^{\mathrm{2}{n}+\mathrm{1}} \:+{c} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)!}×\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}+\mathrm{1}} }\:+{c} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}×\mathrm{3}!}×\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{5}!}×\frac{\mathrm{1}}{{x}^{\mathrm{5}} }−....\:+{c} \\ $$

Commented by mathmax by abdo last updated on 10/May/20

I =(1/x)−(1/(3.3! x^3 ))+(1/(5.5! x^5 )) +....+c

$${I}\:=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{3}!\:{x}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{5}!\:{x}^{\mathrm{5}} }\:+....+{c} \\ $$

Answered by peter frank last updated on 10/May/20

let u=(1/x)  du=−(1/x^2 )dx  dx=−x^2 du  ∫usinu .−x^2 du  −∫(1/u)sin udu  sin u=u−(u^3 /(3!))+(u^5 /(5!))−(u^7 /(7!))  ((sin u)/u)=1−(u^2 /(3!))+(u^4 /(5!))−(u^6 /(7!))  −∫(1−(u^2 /(3!))+(u^4 /(5!))−(u^6 /(7!)))du  −(u−(u^3 /(3.3!))+(u^5 /(5.5!))−(u^7 /(7.7!)))   u=(1/x)  −(u−(u^3 /(3.3!))+(u^5 /(5.5!))−(u^7 /(7.7!)))

$${let}\:{u}=\frac{\mathrm{1}}{{x}} \\ $$$${du}=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$${dx}=−{x}^{\mathrm{2}} {du} \\ $$$$\int{u}\mathrm{sin}{u}\:.−{x}^{\mathrm{2}} {du} \\ $$$$−\int\frac{\mathrm{1}}{{u}}\mathrm{sin}\:{udu} \\ $$$$\mathrm{sin}\:{u}={u}−\frac{{u}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{u}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{u}^{\mathrm{7}} }{\mathrm{7}!} \\ $$$$\frac{\mathrm{sin}\:{u}}{{u}}=\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{u}^{\mathrm{4}} }{\mathrm{5}!}−\frac{{u}^{\mathrm{6}} }{\mathrm{7}!} \\ $$$$−\int\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{u}^{\mathrm{4}} }{\mathrm{5}!}−\frac{{u}^{\mathrm{6}} }{\mathrm{7}!}\right){du} \\ $$$$−\left({u}−\frac{{u}^{\mathrm{3}} }{\mathrm{3}.\mathrm{3}!}+\frac{{u}^{\mathrm{5}} }{\mathrm{5}.\mathrm{5}!}−\frac{{u}^{\mathrm{7}} }{\mathrm{7}.\mathrm{7}!}\right) \\ $$$$\:{u}=\frac{\mathrm{1}}{{x}} \\ $$$$−\left({u}−\frac{{u}^{\mathrm{3}} }{\mathrm{3}.\mathrm{3}!}+\frac{{u}^{\mathrm{5}} }{\mathrm{5}.\mathrm{5}!}−\frac{{u}^{\mathrm{7}} }{\mathrm{7}.\mathrm{7}!}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com