Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197191 by tri26112004 last updated on 10/Sep/23

∫(1/(x^3 −3x+7))dx

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}}{dx} \\ $$

Answered by Frix last updated on 10/Sep/23

x^3 −3x+7=(x−a)(x^2 +ax+b)  a=−((((7+3(√5)))^(1/3) +((7−3(√5)))^(1/3) )/( (2)^(1/3) )); b=−(7/a)  ∫(dx/((x−a)(x^2 +ax+b)))=  =(1/(2a^2 +b))∫(dx/(x−a))−(1/(2a^2 +b))∫((x+2a)/(x^2 +ax+b))dx  Which are easy to solve. The only problem  is to write down the exact constants.

$${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}=\left({x}−{a}\right)\left({x}^{\mathrm{2}} +{ax}+{b}\right) \\ $$$${a}=−\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}+\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}};\:{b}=−\frac{\mathrm{7}}{{a}} \\ $$$$\int\frac{{dx}}{\left({x}−{a}\right)\left({x}^{\mathrm{2}} +{ax}+{b}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} +{b}}\int\frac{{dx}}{{x}−{a}}−\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} +{b}}\int\frac{{x}+\mathrm{2}{a}}{{x}^{\mathrm{2}} +{ax}+{b}}{dx} \\ $$$$\mathrm{Which}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}.\:\mathrm{The}\:\mathrm{only}\:\mathrm{problem} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{constants}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com