Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76468 by kaivan.ahmadi last updated on 27/Dec/19

∫((1−x^2 −8x+1)/(x^4 −x^3 −x+1))dx

$$\int\frac{\mathrm{1}−{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{3}} −{x}+\mathrm{1}}{dx} \\ $$

Commented by mr W last updated on 27/Dec/19

why did you write 1−x^2 −8x+1  instead of 2−x^2 −8x ?

$${why}\:{did}\:{you}\:{write}\:\mathrm{1}−{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{1} \\ $$$${instead}\:{of}\:\mathrm{2}−{x}^{\mathrm{2}} −\mathrm{8}{x}\:? \\ $$

Commented by kaivan.ahmadi last updated on 27/Dec/19

i dont know.it is a practice that i saw it.

$${i}\:{dont}\:{know}.{it}\:{is}\:{a}\:{practice}\:{that}\:{i}\:{saw}\:{it}. \\ $$

Answered by MJS last updated on 27/Dec/19

just decompose  ∫((−x^2 −8x+2)/(x^4 −x^3 −x+1))dx=−∫((x^2 +8x−2)/((x−1)^2 (x^2 +x+1)))dx=  =∫((x+((10)/3))/(x^2 +x+1))dx−(7/3)∫(dx/((x−1)^2 ))−∫(dx/(x−1))=  =((17)/6)∫(dx/(x^2 +x+1))+(1/2)∫((2x+1)/(x^2 +x+1))dx−(7/3)∫(dx/((x−1)^2 ))−∫(dx/(x−1))=  =((17(√3))/9)arctan (((√3)(2x+1))/3)+(1/2)ln (x^2 +x+1) +(7/(3(x−1)))−ln ∣x−1∣ =  =((17(√3))/9)arctan (((√3)(2x+1))/3) +(1/2)ln ((x^2 +x+1)/((x−1)^2 )) +(7/(3(x−1))) +C

$$\mathrm{just}\:\mathrm{decompose} \\ $$$$\int\frac{−{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{2}}{{x}^{\mathrm{4}} −{x}^{\mathrm{3}} −{x}+\mathrm{1}}{dx}=−\int\frac{{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{2}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}{dx}= \\ $$$$=\int\frac{{x}+\frac{\mathrm{10}}{\mathrm{3}}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}−\frac{\mathrm{7}}{\mathrm{3}}\int\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }−\int\frac{{dx}}{{x}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{17}}{\mathrm{6}}\int\frac{{dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}−\frac{\mathrm{7}}{\mathrm{3}}\int\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }−\int\frac{{dx}}{{x}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{17}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:+\frac{\mathrm{7}}{\mathrm{3}\left({x}−\mathrm{1}\right)}−\mathrm{ln}\:\mid{x}−\mathrm{1}\mid\:= \\ $$$$=\frac{\mathrm{17}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{7}}{\mathrm{3}\left({x}−\mathrm{1}\right)}\:+{C} \\ $$

Commented by kaivan.ahmadi last updated on 29/Dec/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com