Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 118489 by bramlexs22 last updated on 18/Oct/20

(1) solve the equation ((x−49)/(50)) + ((x−50)/(49)) = ((49)/(x−50)) + ((50)/(x−49))  (2) How many numbers from 12 to 12345   inclusive have digits which are   consecutive an in increasing order,  reading from left to right ?

$$\left(\mathrm{1}\right)\:{solve}\:{the}\:{equation}\:\frac{{x}−\mathrm{49}}{\mathrm{50}}\:+\:\frac{{x}−\mathrm{50}}{\mathrm{49}}\:=\:\frac{\mathrm{49}}{{x}−\mathrm{50}}\:+\:\frac{\mathrm{50}}{{x}−\mathrm{49}} \\ $$$$\left(\mathrm{2}\right)\:{How}\:{many}\:{numbers}\:{from}\:\mathrm{12}\:{to}\:\mathrm{12345}\: \\ $$$${inclusive}\:{have}\:{digits}\:{which}\:{are}\: \\ $$$${consecutive}\:{an}\:{in}\:{increasing}\:{order}, \\ $$$${reading}\:{from}\:{left}\:{to}\:{right}\:?\: \\ $$

Answered by benjo_mathlover last updated on 18/Oct/20

 Solve the equation ((x−49)/(50)) + ((x−50)/(49)) = ((49)/(x−50)) + ((50)/(x−49))  solution :   (•) ((x−49)/(50)) + ((x−50)/(49)) = ((49)/(x−50)) + ((50)/(x−49))  let ((x−49)/(50)) = t →x=50t+49  ⇒ t + ((50t−1)/(49)) = (1/t) + ((50)/(50t))   ⇒ t + ((50t)/(49)) −(1/(49)) = (2/t)  ⇒((99t)/(49)) − (2/t) = (1/(49)) ; 99t^2  −98 = t    ⇒ 99t^2 −t−98 = 0 ; (99t +98)(t−1) = 0   { ((t=1 ⇒x = 99)),((t=−((98)/(99)) ⇒x = 50(−((98)/(99)))+49 = −((49)/(99)))) :}

$$\:{Solve}\:{the}\:{equation}\:\frac{{x}−\mathrm{49}}{\mathrm{50}}\:+\:\frac{{x}−\mathrm{50}}{\mathrm{49}}\:=\:\frac{\mathrm{49}}{{x}−\mathrm{50}}\:+\:\frac{\mathrm{50}}{{x}−\mathrm{49}} \\ $$$${solution}\::\: \\ $$$$\left(\bullet\right)\:\frac{{x}−\mathrm{49}}{\mathrm{50}}\:+\:\frac{{x}−\mathrm{50}}{\mathrm{49}}\:=\:\frac{\mathrm{49}}{{x}−\mathrm{50}}\:+\:\frac{\mathrm{50}}{{x}−\mathrm{49}} \\ $$$${let}\:\frac{{x}−\mathrm{49}}{\mathrm{50}}\:=\:{t}\:\rightarrow{x}=\mathrm{50}{t}+\mathrm{49} \\ $$$$\Rightarrow\:{t}\:+\:\frac{\mathrm{50}{t}−\mathrm{1}}{\mathrm{49}}\:=\:\frac{\mathrm{1}}{{t}}\:+\:\frac{\mathrm{50}}{\mathrm{50}{t}}\: \\ $$$$\Rightarrow\:{t}\:+\:\frac{\mathrm{50}{t}}{\mathrm{49}}\:−\frac{\mathrm{1}}{\mathrm{49}}\:=\:\frac{\mathrm{2}}{{t}} \\ $$$$\Rightarrow\frac{\mathrm{99}{t}}{\mathrm{49}}\:−\:\frac{\mathrm{2}}{{t}}\:=\:\frac{\mathrm{1}}{\mathrm{49}}\:;\:\mathrm{99}{t}^{\mathrm{2}} \:−\mathrm{98}\:=\:{t}\:\: \\ $$$$\Rightarrow\:\mathrm{99}{t}^{\mathrm{2}} −{t}−\mathrm{98}\:=\:\mathrm{0}\:;\:\left(\mathrm{99}{t}\:+\mathrm{98}\right)\left({t}−\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\begin{cases}{{t}=\mathrm{1}\:\Rightarrow{x}\:=\:\mathrm{99}}\\{{t}=−\frac{\mathrm{98}}{\mathrm{99}}\:\Rightarrow{x}\:=\:\mathrm{50}\left(−\frac{\mathrm{98}}{\mathrm{99}}\right)+\mathrm{49}\:=\:−\frac{\mathrm{49}}{\mathrm{99}}}\end{cases} \\ $$$$ \\ $$

Answered by som(math1967) last updated on 18/Oct/20

(2) 2digit.....  8 (last number 89)  3digit  ....7 (last number 789)  4digit....6 (last number 6789)  5digit.....1(last number 12345)  total 8+7+6+1=22

$$\left(\mathrm{2}\right)\:\mathrm{2digit}.....\:\:\mathrm{8}\:\left(\mathrm{last}\:\mathrm{number}\:\mathrm{89}\right) \\ $$$$\mathrm{3digit}\:\:....\mathrm{7}\:\left(\mathrm{last}\:\mathrm{number}\:\mathrm{789}\right) \\ $$$$\mathrm{4digit}....\mathrm{6}\:\left(\mathrm{last}\:\mathrm{number}\:\mathrm{6789}\right) \\ $$$$\mathrm{5digit}.....\mathrm{1}\left(\mathrm{last}\:\mathrm{number}\:\mathrm{12345}\right) \\ $$$$\mathrm{total}\:\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{1}=\mathrm{22}\: \\ $$

Commented by bramlexs22 last updated on 18/Oct/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com