Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153924 by ZiYangLee last updated on 12/Sep/21

∫ ((1+sin x)/(sin x(1+cos x))) dx =?

$$\int\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}\:{dx}\:=? \\ $$

Answered by ArielVyny last updated on 12/Sep/21

∫(((1+sinx))/(sinx(1+cosx)))dx=∫(1/(sinx(1+cosx)))+∫(1/(1+cosx))dx  t=tan((x/2))→dt=(1/2)(1+t^2 )dx  dx=(2/(1+t^2 ))dt  ∫(1/(((2t)/(1+t^2 ))(1+((1−t^2 )/(1+t^2 )))))×(2/(1+t^2 ))dt+∫(1/(1+((1−t^2 )/(1+t^2 )))).(2/(1+t^2 ))dt  ∫(1/(t(1+((1−t^2 )/(1+t^2 )))))dt+∫(1/((1+t^2 )+1−t^2 ))dt  ∫(1/(t(((1+t^2 )/(1+t^2 ))+((1−t^2 )/(1+t^2 )))))dt+∫(1/2)dt  ∫((1+t^2 )/(2t))dt+(1/2)t+C    (1/2)ln∣t∣+(1/4)t^2 +(1/2)t+C  ∫((1+sinx)/(sinx(1+cosx)))dt=ln((√(∣tan((x/2))∣)))+(1/4)(tan((x/2)))^2 +(1/2)(tan((x/2)))+C

$$\int\frac{\left(\mathrm{1}+{sinx}\right)}{{sinx}\left(\mathrm{1}+{cosx}\right)}{dx}=\int\frac{\mathrm{1}}{{sinx}\left(\mathrm{1}+{cosx}\right)}+\int\frac{\mathrm{1}}{\mathrm{1}+{cosx}}{dx} \\ $$$${t}={tan}\left(\frac{{x}}{\mathrm{2}}\right)\rightarrow{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dx} \\ $$$${dx}=\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\int\frac{\mathrm{1}}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}×\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}+\int\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\int\frac{\mathrm{1}}{{t}\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{dt}+\int\frac{\mathrm{1}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$\int\frac{\mathrm{1}}{{t}\left(\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}{dt}+\int\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$$$\int\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{2}{t}}{dt}+\frac{\mathrm{1}}{\mathrm{2}}{t}+{C} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{t}\mid+\frac{\mathrm{1}}{\mathrm{4}}{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{t}+{C} \\ $$$$\int\frac{\mathrm{1}+{sinx}}{{sinx}\left(\mathrm{1}+{cosx}\right)}{dt}={ln}\left(\sqrt{\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)+{C} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 12/Sep/21

Weldone sir.

$$\mathrm{Weldone}\:\mathrm{sir}. \\ $$

Answered by puissant last updated on 12/Sep/21

Q=∫((1+sinx)/(sinx(1+cosx)))dx  u=tan((x/2))→x=2arctan(u)→dx=((2du)/(1+u^2 ))  Q=∫((1+((2u)/(1+u^2 )))/(((2u)/(1+u^2 ))(1+((1−u^2 )/(1+u^2 )))))×((2du)/(1+u^2 ))  ⇒ Q=∫(((u^2 +2u+1)/(1+u^2 ))/(((2u)/(1+u^2 ))×(2/(1+u^2 ))))×((2du)/(1+u^2 ))  ⇒ Q=∫((u^2 +2u+1)/(2u))du  ⇒ Q=(1/4)u^2 +u+(1/2)ln∣u∣+C    ∴∵  Q=(1/4)(tan((x/2)))^2 +tan((x/2))+(1/2)ln∣tan((x/2))∣+C..

$${Q}=\int\frac{\mathrm{1}+{sinx}}{{sinx}\left(\mathrm{1}+{cosx}\right)}{dx} \\ $$$${u}={tan}\left(\frac{{x}}{\mathrm{2}}\right)\rightarrow{x}=\mathrm{2}{arctan}\left({u}\right)\rightarrow{dx}=\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$${Q}=\int\frac{\mathrm{1}+\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)}×\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{Q}=\int\frac{\frac{{u}^{\mathrm{2}} +\mathrm{2}{u}+\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }×\frac{\mathrm{2}}{\mathrm{1}+{u}^{\mathrm{2}} }}×\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{Q}=\int\frac{{u}^{\mathrm{2}} +\mathrm{2}{u}+\mathrm{1}}{\mathrm{2}{u}}{du} \\ $$$$\Rightarrow\:{Q}=\frac{\mathrm{1}}{\mathrm{4}}{u}^{\mathrm{2}} +{u}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{u}\mid+{C} \\ $$$$ \\ $$$$\therefore\because\:\:{Q}=\frac{\mathrm{1}}{\mathrm{4}}\left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} +{tan}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid+{C}.. \\ $$

Commented by ZiYangLee last updated on 12/Sep/21

thank you puissant...for always helping me on  my integration problems...

$${thank}\:{you}\:{puissant}...{for}\:{always}\:{helping}\:{me}\:{on} \\ $$$${my}\:{integration}\:{problems}... \\ $$

Commented by puissant last updated on 12/Sep/21

Thank you. I am really happy..

$${Thank}\:{you}.\:{I}\:{am}\:{really}\:{happy}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com