Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30485 by abdo imad last updated on 22/Feb/18

1) prove that ∀ x>0   (x/(x+1)) ≤ ln(1+x)≤x  2) let put  S_n = Π_(k=1) ^n (1 + (k/n)) find lim_(n→∞)  S_n   .

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{x}>\mathrm{0}\:\:\:\frac{{x}}{{x}+\mathrm{1}}\:\leqslant\:{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\:+\:\frac{{k}}{{n}}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} \:\:. \\ $$

Commented by chantriachheang last updated on 23/Feb/18

well, it is a famous problem ^� ∧∧

$$\boldsymbol{{well}},\:\boldsymbol{{it}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{famous}}\:\boldsymbol{{problem}}\hat {\:}\wedge\wedge \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com