Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30484 by abdo imad last updated on 22/Feb/18

1) prove that if f is decreasing function we have   ∫_n ^(n+1) f(t)dt <f(n)< ∫_(n−1) ^n  f(t) dt  .  2) let put  S_n = Σ_(k=1) ^n^2     (1/(2(√k))) .calculate [S_n ].

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{if}\:{f}\:{is}\:{decreasing}\:{function}\:{we}\:{have} \\ $$$$\:\int_{{n}} ^{{n}+\mathrm{1}} {f}\left({t}\right){dt}\:<{f}\left({n}\right)<\:\int_{{n}−\mathrm{1}} ^{{n}} \:{f}\left({t}\right)\:{dt}\:\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{put}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}^{\mathrm{2}} } \:\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{k}}}\:.{calculate}\:\left[{S}_{{n}} \right]. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com