Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 112273 by bemath last updated on 07/Sep/20

 (1)  lim_(x→∞) (e^x +e^(−x) )^(2/x)  =?  (2) lim_(x→(π/2)) (cos x)^(−x+(π/2)) ?  (3) lim_(x→0)  (√((1+tan x)/x^2 ))−(√(((1−sin x)/x^2 ) ))?

$$\:\left(\mathrm{1}\right)\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} \right)^{\frac{\mathrm{2}}{\mathrm{x}}} \:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left(\mathrm{cos}\:\mathrm{x}\right)^{−\mathrm{x}+\frac{\pi}{\mathrm{2}}} ? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }}−\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\:}? \\ $$

Commented by Dwaipayan Shikari last updated on 07/Sep/20

e^(−2) (1+e^(2x) )^(2/x) =y  −2+(2/x)log(1+e^(2x) )=logy  −2+((4e^(2x) )/(1+e^(2x) ))=logy  −2+4(1−(1/(1+e^(2x) )))=logy  −2+4=logy  y=e^2

$${e}^{−\mathrm{2}} \left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)^{\frac{\mathrm{2}}{{x}}} ={y} \\ $$$$−\mathrm{2}+\frac{\mathrm{2}}{{x}}{log}\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)={logy} \\ $$$$−\mathrm{2}+\frac{\mathrm{4}{e}^{\mathrm{2}{x}} }{\mathrm{1}+{e}^{\mathrm{2}{x}} }={logy} \\ $$$$−\mathrm{2}+\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{2}{x}} }\right)={logy} \\ $$$$−\mathrm{2}+\mathrm{4}={logy} \\ $$$${y}={e}^{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 07/Sep/20

lim_(x→(π/2)) (cosx)^(−x+(π/2)) =y  ⇒−(x−(π/2))log(cosx)=logy  ⇒−(x−(π/2))(cosx−1)((log(1+cosx−1))/(cosx−1))=logy  ⇒2(x−(π/2))sin^2 (x/2)=logy  ⇒logy=0  y=1

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\left({cosx}\right)^{−{x}+\frac{\pi}{\mathrm{2}}} ={y} \\ $$$$\Rightarrow−\left({x}−\frac{\pi}{\mathrm{2}}\right){log}\left({cosx}\right)={logy} \\ $$$$\Rightarrow−\left({x}−\frac{\pi}{\mathrm{2}}\right)\left({cosx}−\mathrm{1}\right)\frac{{log}\left(\mathrm{1}+{cosx}−\mathrm{1}\right)}{{cosx}−\mathrm{1}}={logy} \\ $$$$\Rightarrow\mathrm{2}\left({x}−\frac{\pi}{\mathrm{2}}\right){sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}={logy} \\ $$$$\Rightarrow{logy}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$

Answered by bemath last updated on 07/Sep/20

Commented by mohammad17 last updated on 07/Sep/20

sir in step four (((tanx+sinx)/(∣x∣))) not (((tanx−sinx)/(∣x∣)))

$${sir}\:{in}\:{step}\:{four}\:\left(\frac{{tanx}+{sinx}}{\mid{x}\mid}\right)\:{not}\:\left(\frac{{tanx}−{sinx}}{\mid{x}\mid}\right) \\ $$

Commented by bemath last updated on 07/Sep/20

oo yes you are right

$$\mathrm{oo}\:\mathrm{yes}\:\mathrm{you}\:\mathrm{are}\:\mathrm{right} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com