Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 110307 by bemath last updated on 28/Aug/20

(1)lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) ?  (2) ∫_0 ^1  arctan (((2x−1)/(1+x−x^2 ))) dx  (3)how many integer solution sets  exist for the equation x^2 +y^2 =2

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{arctan}\:\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{1}+{x}−{x}^{\mathrm{2}} }\right)\:{dx} \\ $$$$\left(\mathrm{3}\right){how}\:{many}\:{integer}\:{solution}\:{sets} \\ $$$${exist}\:{for}\:{the}\:{equation}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$

Answered by john santu last updated on 28/Aug/20

  ★((JS)/≈)★  let x = − t , then t→∞  lim_(t→∞)  ((3+3t)/( (√(t^2 +4t+1)))) = lim_(t→∞)  ((t(3+(3/t)))/(t(√(1+(4/t)+(1/t^2 )))))= 3

$$\:\:\bigstar\frac{{JS}}{\approx}\bigstar \\ $$$${let}\:{x}\:=\:−\:{t}\:,\:{then}\:{t}\rightarrow\infty \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}+\mathrm{3}{t}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}}}\:=\:\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\frac{{t}\left(\mathrm{3}+\frac{\mathrm{3}}{{t}}\right)}{{t}\sqrt{\mathrm{1}+\frac{\mathrm{4}}{{t}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}}=\:\mathrm{3} \\ $$

Answered by Dwaipayan Shikari last updated on 28/Aug/20

∫_0 ^1 tan^(−1) (((x−(1−x))/(1+x(1−x))))  ∫_0 ^1 tan^(−1) x−tan^(−1) (1−x)=∫_0 ^1 tan^(−1) (1−x)−tan^(−1) x=I  2I=0  I=0

$$\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} \left(\frac{{x}−\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}\left(\mathrm{1}−{x}\right)}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} {x}−{tan}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)−{tan}^{−\mathrm{1}} {x}={I} \\ $$$$\mathrm{2}{I}=\mathrm{0} \\ $$$${I}=\mathrm{0} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Aug/20

Is it right?

$${Is}\:{it}\:{right}? \\ $$

Answered by Aziztisffola last updated on 28/Aug/20

 (3) (x;y)∈{(1;1);(1;−1);(−1;1);(−1;−1)}

$$\:\left(\mathrm{3}\right)\:\left({x};{y}\right)\in\left\{\left(\mathrm{1};\mathrm{1}\right);\left(\mathrm{1};−\mathrm{1}\right);\left(−\mathrm{1};\mathrm{1}\right);\left(−\mathrm{1};−\mathrm{1}\right)\right\} \\ $$

Answered by Rio Michael last updated on 28/Aug/20

 lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) = lim_(x→−∞)  ((3−3x)/(x(√(1−(4/x) + (1/x^2 )))))                                          = lim_(x→−∞)  (((3/x)−3)/( (√(1−(4/x) + (1/x^2 ))))) = −3

$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}}\:=\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3}{x}}{{x}\sqrt{\mathrm{1}−\frac{\mathrm{4}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{3}}{{x}}−\mathrm{3}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{4}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}}\:=\:−\mathrm{3}\: \\ $$

Commented by bemath last updated on 28/Aug/20

wrong sir. x→−∞ it should be   (√(x^2  )) = −x not x

$${wrong}\:{sir}.\:{x}\rightarrow−\infty\:{it}\:{should}\:{be}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} \:}\:=\:−{x}\:{not}\:{x}\: \\ $$

Commented by Rio Michael last updated on 28/Aug/20

correct. thanks for the correction

$$\mathrm{correct}.\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{correction} \\ $$

Answered by 1549442205PVT last updated on 28/Aug/20

(1)lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) =lim_(x→−∞)  ((3−3x)/( (−x )  (√(1−(4/x)+(1/x^2 )))))  =lim_(x→−∞)  ((((−3)/x)+3)/( (√(1−(4/x)+(1/x^2 )))))=((0+3)/( (√(1−0+0))))=3  3)Solve x^2 +y^2 =2 in Z.  x^2 =2−y^2 ≤2 but since x∈Z,∣x∣≤1  ⇒x∈−1,1⇒y∈{±1,±1}   The solution set of the given eq.  has four elements  S={(−1,−1),(−1,1),(1,−1),(1,1)}

$$\left(\mathrm{1}\right)\underset{\mathrm{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}}\:=\underset{\mathrm{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3x}}{\:\left(−\mathrm{x}\:\right)\:\:\sqrt{\mathrm{1}−\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}} \\ $$$$=\underset{\mathrm{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\frac{−\mathrm{3}}{\mathrm{x}}+\mathrm{3}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{4}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}}=\frac{\mathrm{0}+\mathrm{3}}{\:\sqrt{\mathrm{1}−\mathrm{0}+\mathrm{0}}}=\mathrm{3} \\ $$$$\left.\mathrm{3}\right)\mathrm{Solve}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{2}\:\mathrm{in}\:\mathbb{Z}. \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{2}−\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{2}\:\mathrm{but}\:\mathrm{since}\:\mathrm{x}\in\mathbb{Z},\mid\mathrm{x}\mid\leqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}\in−\mathrm{1},\mathrm{1}\Rightarrow\mathrm{y}\in\left\{\pm\mathrm{1},\pm\mathrm{1}\right\} \\ $$$$\:\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{eq}. \\ $$$$\mathrm{has}\:\mathrm{four}\:\mathrm{elements} \\ $$$$\mathrm{S}=\left\{\left(−\mathrm{1},−\mathrm{1}\right),\left(−\mathrm{1},\mathrm{1}\right),\left(\mathrm{1},−\mathrm{1}\right),\left(\mathrm{1},\mathrm{1}\right)\right\} \\ $$

Answered by john santu last updated on 28/Aug/20

(2)∫ tan^(−1) (((2x−1)/(1+x−x^2 ))) dx = I  setting x = u−(1/2)  I=∫_(−1/2) ^(1/2) tan^(−1) (((2u)/((5/4)−u^2 ))) du   since the resulting integrand is  a continous odd function , so we got  I = 0.

$$\left(\mathrm{2}\right)\int\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{1}+{x}−{x}^{\mathrm{2}} }\right)\:{dx}\:=\:{I} \\ $$$${setting}\:{x}\:=\:{u}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}=\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{u}}{\frac{\mathrm{5}}{\mathrm{4}}−{u}^{\mathrm{2}} }\right)\:{du}\: \\ $$$${since}\:{the}\:{resulting}\:{integrand}\:{is} \\ $$$${a}\:{continous}\:{odd}\:{function}\:,\:{so}\:{we}\:{got} \\ $$$${I}\:=\:\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com