Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 113274 by bemath last updated on 12/Sep/20

 (1) lim_(x→0)  ((tan x+4tan 2x−3tan 3x)/(x^2  tan x))   (2) lim_(x→0)  (((√x)−(√(sin x)))/x^(3/2) )    (3) lim_(x→0)  (((√x)+(√(sin x)))/x^(5/2) )

$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}+\mathrm{4tan}\:\mathrm{2x}−\mathrm{3tan}\:\mathrm{3x}}{\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}\:\mathrm{x}} \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\: \\ $$$$\:\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}+\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} } \\ $$

Commented by bemath last updated on 12/Sep/20

Commented by bobhans last updated on 13/Sep/20

(3) lim_(x→0)  ((x−sin x)/(x^2  (√x) ((√x) +(√(sin x))))) =          lim_(x→0)  ((x−sin x)/x^3 ) . lim_(x→0)  (x/( (√x) ((√x) +(√(x+(x^3 /6))))))  = (1/6).lim_(x→0)  (x/(x (1+(√(1+(x^2 /6)))))) = (1/(12))

$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{x}}\:\left(\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{sin}\:\mathrm{x}}\right)}\:= \\ $$$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{x}}\:\left(\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{6}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\mathrm{x}\:\left(\mathrm{1}+\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{6}}}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Answered by john santu last updated on 12/Sep/20

lim_(x→0)  ((tan x+4tan 2x−3tan 3x)/(x^2  tan x)) = L  L = lim_(x→0) ((x+(x^3 /3)+4(2x+((8x^3 )/3))−3(3x+((27x^3 )/3)))/(x^2  (x+(x^3 /3))))  L = lim_(x→0)  ((11x^3 −27x^3 )/(x^3 (1+(x^2 /3)))) = −16.

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}+\mathrm{4tan}\:\mathrm{2}{x}−\mathrm{3tan}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} \:\mathrm{tan}\:{x}}\:=\:{L} \\ $$$${L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{4}\left(\mathrm{2}{x}+\frac{\mathrm{8}{x}^{\mathrm{3}} }{\mathrm{3}}\right)−\mathrm{3}\left(\mathrm{3}{x}+\frac{\mathrm{27}{x}^{\mathrm{3}} }{\mathrm{3}}\right)}{{x}^{\mathrm{2}} \:\left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right)} \\ $$$${L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{11}{x}^{\mathrm{3}} −\mathrm{27}{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)}\:=\:−\mathrm{16}. \\ $$

Answered by Dwaipayan Shikari last updated on 12/Sep/20

lim_(x→0) (((√x)−(√(x−(x^3 /6))))/x^(3/2) )=(((√x)(1−(√(1−(x^2 /6) ))))/x^(3/2) )=((1−1+(x^2 /(12)))/x)=0

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{{x}}−\sqrt{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\sqrt{{x}}\left(\mathrm{1}−\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\:}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{12}}}{{x}}=\mathrm{0} \\ $$

Answered by bemath last updated on 12/Sep/20

Answered by abdomsup last updated on 12/Sep/20

2) let f(x) =(((√x)−(√(sinx)))/x^(3/2) ) ⇒  f(x) =((1−x^(−(1/2)) (√(sinx)))/x)  we have sinx ∼x−(x^3 /6) ⇒  (√(sinx)) ∼(√x)(√(1−(x^2 /2)))∼x^(1/2) (1−(x^2 /4)) ⇒  f(x)∼((1−(1−(x^2 /4)))/x) =(x/4) ⇒  lim_(x→0) f(x) =0

$$\left.\mathrm{2}\right)\:{let}\:{f}\left({x}\right)\:=\frac{\sqrt{{x}}−\sqrt{{sinx}}}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\frac{\mathrm{1}−{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{{sinx}}}{{x}} \\ $$$${we}\:{have}\:{sinx}\:\sim{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\Rightarrow \\ $$$$\sqrt{{sinx}}\:\sim\sqrt{{x}}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\sim{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)\sim\frac{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)}{{x}}\:=\frac{{x}}{\mathrm{4}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com