Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33894 by math khazana by abdo last updated on 26/Apr/18

1)let f  R→C  2π periodic even  /f(x)=x   ∀ x∈[0,π[  developp f at fourier serie  2) calculate  Σ_(p=0) ^∞   (1/((2p+1)^2 )) .

$$\left.\mathrm{1}\right){let}\:{f}\:\:{R}\rightarrow{C}\:\:\mathrm{2}\pi\:{periodic}\:{even}\:\:/{f}\left({x}\right)={x}\: \\ $$$$\forall\:{x}\in\left[\mathrm{0},\pi\left[\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Commented by abdo imad last updated on 28/Apr/18

f is even so f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)with  a_n = (2/T) ∫_([T]) f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π  x cos(nx)dx  =(2/π) ∫_0 ^π  xcos(nx)dx⇒ (π/2)a_n =∫_0 ^π  xcos(nx)dx let integrate  by parts u^ =x and v^′ =cos(nx)⇒  (π/2)a_n =((x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n)∫_0 ^π sin(nx)=(1/n^2 )[cos(nx)]_0 ^π =(1/n^2 )((−1)^n  −1) ⇒  a_n =(2/(πn^2 ))((−1)^n −1)⇒a_(2n)  =0 and a_(2n+1) =((−4)/(π(2n+1)^2 ))  (π/2)a_0 =∫_0 ^π xdx=(π^2 /2) ⇒a_0  =π ⇒  f(x) = (π/2) −(4/π) Σ_(n=0) ^∞    ((cos(2n+1)x)/((2n+1)^2 ))  (d)  2) let take x=0 in (d) we get  0=(π/2) −(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π/2) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(π^2 /8) .

$${f}\:{is}\:{even}\:{so}\:{f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right){with} \\ $$$${a}_{{n}} =\:\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} {f}\left({x}\right){cos}\left({nx}\right){dx}=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:{x}\:{cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{xcos}\left({nx}\right){dx}\Rightarrow\:\frac{\pi}{\mathrm{2}}{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:{xcos}\left({nx}\right){dx}\:{let}\:{integrate} \\ $$$${by}\:{parts}\:{u}^{} ={x}\:{and}\:{v}^{'} ={cos}\left({nx}\right)\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =\left(\frac{{x}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{{n}}{sin}\left({nx}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\pi} {sin}\left({nx}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\left(−\mathrm{1}\right)^{{n}} \:−\mathrm{1}\right)\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\pi{n}^{\mathrm{2}} }\left(\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\Rightarrow{a}_{\mathrm{2}{n}} \:=\mathrm{0}\:{and}\:{a}_{\mathrm{2}{n}+\mathrm{1}} =\frac{−\mathrm{4}}{\pi\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\pi} {xdx}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow{a}_{\mathrm{0}} \:=\pi\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{4}}{\pi}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{n}+\mathrm{1}\right){x}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\left({d}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{take}\:{x}=\mathrm{0}\:{in}\:\left({d}\right)\:{we}\:{get} \\ $$$$\mathrm{0}=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{4}}{\pi}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\frac{\mathrm{4}}{\pi}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com