Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122904 by Khalmohmmad last updated on 20/Nov/20

(1+i)^9 =?

$$\left(\mathrm{1}+{i}\right)^{\mathrm{9}} =? \\ $$

Answered by Bird last updated on 20/Nov/20

1+i=(√2)e^((iπ)/4)  ⇒(1+i)^9  =((√2))^9  e^(((k9π)/4)i)   =2^(9/2) {cos(((9π)/4))+isin(((9π)/4))}  cos(((9π)/4))=cos(2π+(π/4))=cos((π/4))=(1/( (√2)))  sin(((9π)/4))=sin(2π+(π/4))=sin((π/4))=(1/( (√2)))  ⇒(1+i)^(9 )  =(2^(9/2) /2^(1/2) )(1+i)  =2^4 (1+i)=16(1+i)

$$\mathrm{1}+{i}=\sqrt{\mathrm{2}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow\left(\mathrm{1}+{i}\right)^{\mathrm{9}} \:=\left(\sqrt{\mathrm{2}}\right)^{\mathrm{9}} \:{e}^{\frac{{k}\mathrm{9}\pi}{\mathrm{4}}{i}} \\ $$$$=\mathrm{2}^{\frac{\mathrm{9}}{\mathrm{2}}} \left\{{cos}\left(\frac{\mathrm{9}\pi}{\mathrm{4}}\right)+{isin}\left(\frac{\mathrm{9}\pi}{\mathrm{4}}\right)\right\} \\ $$$${cos}\left(\frac{\mathrm{9}\pi}{\mathrm{4}}\right)={cos}\left(\mathrm{2}\pi+\frac{\pi}{\mathrm{4}}\right)={cos}\left(\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${sin}\left(\frac{\mathrm{9}\pi}{\mathrm{4}}\right)={sin}\left(\mathrm{2}\pi+\frac{\pi}{\mathrm{4}}\right)={sin}\left(\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\left(\mathrm{1}+{i}\right)^{\mathrm{9}\:} \:=\frac{\mathrm{2}^{\frac{\mathrm{9}}{\mathrm{2}}} }{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} }\left(\mathrm{1}+{i}\right) \\ $$$$=\mathrm{2}^{\mathrm{4}} \left(\mathrm{1}+{i}\right)=\mathrm{16}\left(\mathrm{1}+{i}\right) \\ $$

Answered by Olaf last updated on 20/Nov/20

(1+i)^9  = [(√2)e^(i(π/4)) ]^9  = 2^(9/2) e^(i((9π)/4))   = 16(√2)e^(i((π/4)+2π))  = 16(√2)(((1+i)/( (√2)))) = 16(1+i)

$$\left(\mathrm{1}+{i}\right)^{\mathrm{9}} \:=\:\left[\sqrt{\mathrm{2}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \right]^{\mathrm{9}} \:=\:\mathrm{2}^{\frac{\mathrm{9}}{\mathrm{2}}} {e}^{{i}\frac{\mathrm{9}\pi}{\mathrm{4}}} \\ $$$$=\:\mathrm{16}\sqrt{\mathrm{2}}{e}^{{i}\left(\frac{\pi}{\mathrm{4}}+\mathrm{2}\pi\right)} \:=\:\mathrm{16}\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\right)\:=\:\mathrm{16}\left(\mathrm{1}+{i}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com