Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121862 by Bird last updated on 12/Nov/20

1)explicite f(a)=∫_0 ^∞ ((t^(a−1) lnt)/(1+t))dt  with 0<a<1  2)calculate ∫_0 ^∞   ((lnt)/((1+t)(√t)))dt

$$\left.\mathrm{1}\right){explicite}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{a}−\mathrm{1}} {lnt}}{\mathrm{1}+{t}}{dt} \\ $$$${with}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnt}}{\left(\mathrm{1}+{t}\right)\sqrt{{t}}}{dt} \\ $$

Answered by mnjuly1970 last updated on 12/Nov/20

solution:1 :: g(b)=∫_0 ^( ∞) (t^(a+b−1) /(1+t))dt            f(a)=g′(0)            g(b)=Γ(a+b)Γ(1−a−b)=(π/(sin(π(a+b))))              g′(b)=((−π^2 cos(π(a+b)))/(sin^2 (π(a+b))))                g′(0)=((−π^2 cos(πa))/(sin^2 (πa)))=f(a)^         f(a)=−π^2 cot(πa)csc(πa) ...       2::   f((1/2))=0             we know that ::              ∫_0 ^( ∞) ((ln(x))/(1+x^2 ))dx=^(easy) 0

$${solution}:\mathrm{1}\:::\:{g}\left({b}\right)=\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{{a}+{b}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:{f}\left({a}\right)={g}'\left(\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{g}\left({b}\right)=\Gamma\left({a}+{b}\right)\Gamma\left(\mathrm{1}−{a}−{b}\right)=\frac{\pi}{{sin}\left(\pi\left({a}+{b}\right)\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{g}'\left({b}\right)=\frac{−\pi^{\mathrm{2}} {cos}\left(\pi\left({a}+{b}\right)\right)}{{sin}^{\mathrm{2}} \left(\pi\left({a}+{b}\right)\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{g}'\left(\mathrm{0}\right)=\frac{−\pi^{\mathrm{2}} {cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}={f}\left({a}\overset{} {\right)} \\ $$$$\:\:\:\:\:\:{f}\left({a}\right)=−\pi^{\mathrm{2}} {cot}\left(\pi{a}\right){csc}\left(\pi{a}\right)\:... \\ $$$$\:\:\:\:\:\mathrm{2}::\:\:\:{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{we}\:{know}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\overset{{easy}} {=}\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com