Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 310 by 123456 last updated on 25/Jan/15

∫_1 ^e xe^t −((ln x)/x)dx

$$\underset{\mathrm{1}} {\overset{{e}} {\int}}{xe}^{{t}} −\frac{\mathrm{ln}\:{x}}{{x}}{dx} \\ $$

Answered by prakash jain last updated on 20/Dec/14

∫xe^t dx−∫((ln x)/x)dx  =[(x^2 /2)e^t −(((ln x)^2 )/2)]_1 ^e =[((e^2 e^t )/2)−(1/2)−((e^t /2)−0)]  =(1/2)(e^(t+2) −e^t −1)

$$\int{xe}^{{t}} {dx}−\int\frac{\mathrm{ln}\:{x}}{{x}}{dx} \\ $$$$=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{e}^{{t}} −\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{1}} ^{{e}} =\left[\frac{{e}^{\mathrm{2}} {e}^{{t}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}−\left(\frac{{e}^{{t}} }{\mathrm{2}}−\mathrm{0}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({e}^{{t}+\mathrm{2}} −{e}^{{t}} −\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com