Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 62754 by aliesam last updated on 24/Jun/19

1)∫(dx/(1−sin(x)))    R solve in(2)    (4−x)^4 +x^4 =82

$$\left.\mathrm{1}\right)\int\frac{{dx}}{\mathrm{1}−{sin}\left({x}\right)} \\ $$$$ \\ $$$${R}\:{solve}\:{in}\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\left(\mathrm{4}−{x}\right)^{\mathrm{4}} +{x}^{\mathrm{4}} =\mathrm{82} \\ $$

Commented by Tony Lin last updated on 25/Jun/19

(2)(4−x)^4 +x^4 =81+1=3^4 +1^4   f(x)=(4−x)^4 +x^4 −82  f(1)=0, f(3)=0  ⇒f(x)=2(x^4 −8x^3 +48x^2 −128x+87)                =2(x−1)(x−3)(x^2 −4x+29)  △=(−4)^2 −4×29<0  x^2 −4x+29 has no roots in R  ⇒x=1 or x=3

$$\left(\mathrm{2}\right)\left(\mathrm{4}−{x}\right)^{\mathrm{4}} +{x}^{\mathrm{4}} =\mathrm{81}+\mathrm{1}=\mathrm{3}^{\mathrm{4}} +\mathrm{1}^{\mathrm{4}} \\ $$$${f}\left({x}\right)=\left(\mathrm{4}−{x}\right)^{\mathrm{4}} +{x}^{\mathrm{4}} −\mathrm{82} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0},\:{f}\left(\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{2}\left({x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{3}} +\mathrm{48}{x}^{\mathrm{2}} −\mathrm{128}{x}+\mathrm{87}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{29}\right) \\ $$$$\bigtriangleup=\left(−\mathrm{4}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{29}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{29}\:{has}\:{no}\:{roots}\:{in}\:{R} \\ $$$$\Rightarrow{x}=\mathrm{1}\:{or}\:{x}=\mathrm{3} \\ $$

Commented by mathmax by abdo last updated on 25/Jun/19

let use another way let I =∫  (dx/(1−sinx))  changement tan((x/2))=t give  I =∫     ((2dt)/((1+t^2 )(1−((2t)/(1+t^2 ))))) =∫   ((2dt)/(1+t^2 −2t)) =∫  ((2dt)/((t−1)^2 )) =−(2/(t−1)) +c  =(2/(1−tan((x/2)))) +c .

$${let}\:{use}\:{another}\:{way}\:{let}\:{I}\:=\int\:\:\frac{{dx}}{\mathrm{1}−{sinx}}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int\:\:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)}\:=\int\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{2}{t}}\:=\int\:\:\frac{\mathrm{2}{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\:=−\frac{\mathrm{2}}{{t}−\mathrm{1}}\:+{c} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}−{tan}\left(\frac{{x}}{\mathrm{2}}\right)}\:+{c}\:. \\ $$

Answered by Hope last updated on 25/Jun/19

1)∫((1+sinx)/(cos^2 x))dx  ∫sec^2 x+secxtanx  dx  tanx+secx+c

$$\left.\mathrm{1}\right)\int\frac{\mathrm{1}+{sinx}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$\int{sec}^{\mathrm{2}} {x}+{secxtanx}\:\:{dx} \\ $$$${tanx}+{secx}+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com