Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102303 by bemath last updated on 08/Jul/20

∫ ((1+csc 2x)/(1−sin 2x)) dx ?

$$\int\:\frac{\mathrm{1}+\mathrm{csc}\:\mathrm{2}{x}}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:? \\ $$

Commented by bemath last updated on 08/Jul/20

thank you both

$${thank}\:{you}\:{both} \\ $$

Answered by 1549442205 last updated on 08/Jul/20

F=∫(1/(1−sin2x))dx+∫((cos2x)/((cosx−sinx)^2 ))dx  ∫(dx/((cosx−sinx)^2 ))+∫((cosx+sinx)/(cosx−sinx))dx  =∫(dx/((1/2)cos^2 (x+(π/4))))+∫((((√2)/2)sin(x+(π/4))dx)/(((√2)/2)cos(x+(π/4))))  =2tan(x+(π/4))+∫tan(x+(π/4))dx  =2tan(x+(𝛑/4))+ln∣cos(x+(𝛑/4))∣+C

$$\mathrm{F}=\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin2x}}\mathrm{dx}+\int\frac{\mathrm{cos2x}}{\left(\mathrm{cosx}−\mathrm{sinx}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\int\frac{\mathrm{dx}}{\left(\mathrm{cosx}−\mathrm{sinx}\right)^{\mathrm{2}} }+\int\frac{\mathrm{cosx}+\mathrm{sinx}}{\mathrm{cosx}−\mathrm{sinx}}\mathrm{dx} \\ $$$$=\int\frac{\mathrm{dx}}{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)}+\int\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{dx}}{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{cos}\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\mathrm{2tan}\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\int\mathrm{tan}\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{dx} \\ $$$$=\mathrm{2}\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\pi}}{\mathrm{4}}\right)+\boldsymbol{\mathrm{ln}}\mid\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\pi}}{\mathrm{4}}\right)\mid+\boldsymbol{\mathrm{C}} \\ $$

Answered by Dwaipayan Shikari last updated on 08/Jul/20

∫(1/(1−sin2x))−(1/2)∫((−2cos2x)/(1−sin2x))dx  ∫(1/(1−((2t)/(t^2 +1)))).(1/(t^2 +1))dt−(1/2)log(1−sin2x)     {put tanx=t  ∫(1/((t−1)^2 ))dt−(1/2)log(1−sin2x)=(1/(1−t))−(1/2)log(1−sin2x)  =((cosx)/(cosx−sinx))−(1/2)log(1−sin2x)+C

$$\int\frac{\mathrm{1}}{\mathrm{1}−{sin}\mathrm{2}{x}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{−\mathrm{2}{cos}\mathrm{2}{x}}{\mathrm{1}−{sin}\mathrm{2}{x}}{dx} \\ $$$$\int\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}}.\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{1}−{sin}\mathrm{2}{x}\right)\:\:\:\:\:\left\{{put}\:{tanx}={t}\right. \\ $$$$\int\frac{\mathrm{1}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{1}−{sin}\mathrm{2}{x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{t}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{1}−{sin}\mathrm{2}{x}\right) \\ $$$$=\frac{{cosx}}{{cosx}−{sinx}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{1}−{sin}\mathrm{2}{x}\right)+{C} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com