Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 101554 by student work last updated on 03/Jul/20

(1/(cos80))−((√3)/(sin80))=?

$$\frac{\mathrm{1}}{\mathrm{cos80}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{sin80}}=? \\ $$

Answered by bramlex last updated on 03/Jul/20

((sin 80^o −(√3) cos 80^o )/(sin 80^o cos 80^o )) =   ((2(sin 80^o −(√3) cos 80^o ))/(sin 160^o )) =   4× (((1/2)sin 80^o −((√3)/2)cos 80^o )/(sin 20^o )) =  ((sin 30^o sin 80^o −cos 30^o cos 80^o )/(sin 20^o )) =  ((−4{cos 110^o })/(sin 20^o )) = ((−4(cos (90^o +20^o )))/(sin 20^o )) = 4 ★

$$\frac{\mathrm{sin}\:\mathrm{80}^{\mathrm{o}} −\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{80}^{\mathrm{o}} }{\mathrm{sin}\:\mathrm{80}^{\mathrm{o}} \mathrm{cos}\:\mathrm{80}^{\mathrm{o}} }\:=\: \\ $$$$\frac{\mathrm{2}\left(\mathrm{sin}\:\mathrm{80}^{\mathrm{o}} −\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{80}^{\mathrm{o}} \right)}{\mathrm{sin}\:\mathrm{160}^{\mathrm{o}} }\:=\: \\ $$$$\mathrm{4}×\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{80}^{\mathrm{o}} −\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{cos}\:\mathrm{80}^{\mathrm{o}} }{\mathrm{sin}\:\mathrm{20}^{\mathrm{o}} }\:= \\ $$$$\frac{\mathrm{sin}\:\mathrm{30}^{\mathrm{o}} \mathrm{sin}\:\mathrm{80}^{\mathrm{o}} −\mathrm{cos}\:\mathrm{30}^{\mathrm{o}} \mathrm{cos}\:\mathrm{80}^{\mathrm{o}} }{\mathrm{sin}\:\mathrm{20}^{\mathrm{o}} }\:= \\ $$$$\frac{−\mathrm{4}\left\{\mathrm{cos}\:\mathrm{110}^{\mathrm{o}} \right\}}{\mathrm{sin}\:\mathrm{20}^{\mathrm{o}} }\:=\:\frac{−\mathrm{4}\left(\mathrm{cos}\:\left(\mathrm{90}^{\mathrm{o}} +\mathrm{20}^{\mathrm{o}} \right)\right)}{\mathrm{sin}\:\mathrm{20}^{\mathrm{o}} }\:=\:\mathrm{4}\:\bigstar \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 03/Jul/20

((sin80°−(√3)sin80°)/((1/2)sin20°))=4((((sin80°)/2)−((√3)/2)cos80°)/(sin20))=4((cos(−110°))/(sin20))=4★■

$$\frac{{sin}\mathrm{80}°−\sqrt{\mathrm{3}}{sin}\mathrm{80}°}{\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{20}°}=\mathrm{4}\frac{\frac{{sin}\mathrm{80}°}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\mathrm{80}°}{{sin}\mathrm{20}}=\mathrm{4}\frac{{cos}\left(−\mathrm{110}°\right)}{{sin}\mathrm{20}}=\mathrm{4}\bigstar\blacksquare \\ $$

Answered by mahdi last updated on 03/Jul/20

=((sin80−(√3)cos80)/(cos80sin80))=4(((1/2)sin80−((√3)/2)cos80)/(2cos80sin80))  =4((cos60sin80−sin60cos80)/(2cos80sin80))=  4((sin(80−60))/(sin(80+80)))=4((sin20)/(sin160))=4((sin20)/(sin20))=4

$$=\frac{\mathrm{sin80}−\sqrt{\mathrm{3}}\mathrm{cos80}}{\mathrm{cos80sin80}}=\mathrm{4}\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin80}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{cos80}}{\mathrm{2cos80sin80}} \\ $$$$=\mathrm{4}\frac{\mathrm{cos60sin80}−\mathrm{sin60cos80}}{\mathrm{2cos80sin80}}= \\ $$$$\mathrm{4}\frac{\mathrm{sin}\left(\mathrm{80}−\mathrm{60}\right)}{\mathrm{sin}\left(\mathrm{80}+\mathrm{80}\right)}=\mathrm{4}\frac{\mathrm{sin20}}{\mathrm{sin160}}=\mathrm{4}\frac{\mathrm{sin20}}{\mathrm{sin20}}=\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com