Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 185935 by cortano1 last updated on 30/Jan/23

   ∫ ((1−cos x)/((1+cos x) cos x)) dx =?

$$\:\:\:\int\:\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)\:\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$

Answered by Ar Brandon last updated on 30/Jan/23

I=∫((1−cosx)/((1+cosx)cosx))dx=∫(((1−cosx)^2 )/((1−cos^2 x)cosx))dx    =∫((1−2cosx+cos^2 x)/(sin^2 x))∙(1/(cosx))dx=∫((2cos^2 x+sin^2 x−2cosx)/(sin^2 x))∙(dx/(cosx))    =∫(((2cosx)/(sin^2 x))+(1/(cosx))−(2/(sin^2 x)))dx=2cotx+ln∣secx+tanx∣−(2/(sinx))+C

$${I}=\int\frac{\mathrm{1}−\mathrm{cos}{x}}{\left(\mathrm{1}+\mathrm{cos}{x}\right)\mathrm{cos}{x}}{dx}=\int\frac{\left(\mathrm{1}−\mathrm{cos}{x}\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}\right)\mathrm{cos}{x}}{dx} \\ $$$$\:\:=\int\frac{\mathrm{1}−\mathrm{2cos}{x}+\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}^{\mathrm{2}} {x}}\centerdot\frac{\mathrm{1}}{\mathrm{cos}{x}}{dx}=\int\frac{\mathrm{2cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{2}} {x}−\mathrm{2cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}\centerdot\frac{{dx}}{\mathrm{cos}{x}} \\ $$$$\:\:=\int\left(\frac{\mathrm{2cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}+\frac{\mathrm{1}}{\mathrm{cos}{x}}−\frac{\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} {x}}\right){dx}=\mathrm{2cot}{x}+\mathrm{ln}\mid\mathrm{sec}{x}+\mathrm{tan}{x}\mid−\frac{\mathrm{2}}{\mathrm{sin}{x}}+{C} \\ $$

Answered by ajfour last updated on 30/Jan/23

∫((a/(1+cos x))+(b/(cos x)))dx  a+b=−1  b=1  ⇒  a=−2  I=−∫(sec^2 (x/2))dx+∫sec xdx   =−2tan ((x/2))+ln ∣tan ((π/4)+(x/2))∣+c

$$\int\left(\frac{{a}}{\mathrm{1}+\mathrm{cos}\:{x}}+\frac{{b}}{\mathrm{cos}\:{x}}\right){dx} \\ $$$${a}+{b}=−\mathrm{1} \\ $$$${b}=\mathrm{1}\:\:\Rightarrow\:\:{a}=−\mathrm{2} \\ $$$${I}=−\int\left(\mathrm{sec}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\right){dx}+\int\mathrm{sec}\:{xdx} \\ $$$$\:=−\mathrm{2tan}\:\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{ln}\:\mid\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{x}}{\mathrm{2}}\right)\mid+{c} \\ $$

Commented by ARUNG_Brandon_MBU last updated on 30/Jan/23

Nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com