Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63722 by mathmax by abdo last updated on 08/Jul/19

1) calculate ∫ (x^2 −x+2)(√(x^2 −x+1))dx  2)find the value of ∫_0 ^1 (x^2 −x+2)(√(x^2 −x +1))dx .

1)calculate(x2x+2)x2x+1dx2)findthevalueof01(x2x+2)x2x+1dx.

Commented by Prithwish sen last updated on 08/Jul/19

1) putting x^2 −x+1 = u^2   ⇒ (2x−1)dx = 2udu     and  (2x−1) = ±(√(4u−3.))  = ±2∫((u^2 (u+1) du)/(√(4u−3)))  putting 4u−3 = t^2 ⇒2du = tdt  = (1/(64))∫(t^2 +3)^2 (t^2 +7)dt  = (1/(448))(4(√(x^2 −x+1)) −3)^(7/2) +((13)/(320))(4(√(x^2 −x+1))−3)^(5/2) +((15)/(192))(4(√(x^2 −x+1 ))−3)^(3/2) +((63)/(64))(4(√(x^2 −x+1))−3) +C  please check.

1)puttingx2x+1=u2(2x1)dx=2uduand(2x1)=±4u3.=±2u2(u+1)du4u3putting4u3=t22du=tdt=164(t2+3)2(t2+7)dt=1448(4x2x+13)72+13320(4x2x+13)52+15192(4x2x+13)32+6364(4x2x+13)+Cpleasecheck.

Commented by MJS last updated on 08/Jul/19

something went wrong  you can put t=(√(x^2 −x+1)) → dx=2dt((√(x^2 −x+1))/(2x−1)); x=((1+(√(4t^2 −3)))/)  ⇒ 2∫((t^2 (t^2 +1))/(√(4t^2 −3)))  or you can put t=x^2 −x+1 → dx=(dt/(2x−1)); x=((1+(√(4u−3)))/2)  ⇒ ∫(((√t)(t+1))/(√(4t−3)))

somethingwentwrongyoucanputt=x2x+1dx=2dtx2x+12x1;x=1+4t232t2(t2+1)4t23oryoucanputt=x2x+1dx=dt2x1;x=1+4u32t(t+1)4t3

Commented by Prithwish sen last updated on 08/Jul/19

thank you sir. I will check it.

thankyousir.Iwillcheckit.

Commented by mathmax by abdo last updated on 08/Jul/19

1) let I =∫ (x^2 −x+2)(√(x^2 −x+1))dx we have  x^2 −x +1 =x^2 −2(1/2)x +(1/4) +1−(1/4) =(x−(1/2))^2  +(3/4)  so we use the  changement x−(1/2) =((√3)/2)sh(t) ⇒  ⇒ I = ∫ ( ((1/2)+((√3)/2)sh(t))^2 −((1/2)+((√3)/2)sh(t)) +2)((√3)/2)ch(t)dt  =((√3)/2)∫  { (1/4)(1+2(√3)sh(t) +3sh^2 (t)−((√3)/2)sh(t)+2−(1/2))ch(t)dt  =((√3)/2) ∫   { ((√3)/2)sh(t) +(3/4)sh^2 (t)−((√3)/2)sh(t) +(7/4)}ch(t)dt  =((3(√3))/8) ∫ sh(t)ch(t)dt +((7(√3))/8) ∫ ch(t)dt  =((3(√3))/(16))sh^2 (t) +((7(√3))/8) sh(t) +c   =((3(√3))/(16))((ch(2t)−1)/2) +((7(√3))/8)sh(t) +c  =((3(√3))/(32)){ ch(2t)−1} +((7(√3))/8)sh(t) +c .  we have t =argsh(((2x−1)/(√3))) =ln(((2x−1)/(√3)) +(√(1+(((2x−1)/(√3)))^2 )))  ch(2t) =((e^(2t)  +e^(−2t) )/2) =(1/2){(((2x−1)/(√3)) +(√(1+(((2x−1)/(√3)))^2 )))^2 +(1/((((2x−1)/(√3))+(√(1+(((2x−1)/((√3)))))^2 ))))}  sh(t) =((e^t −e^(−t) )/2) =(1/2){ ((2x−1)/(√3))+(√(1+(((2x−1)/(√3)))))^2 − (1/(((2x−1)/(√3))+(√(1+(((2x−1)/(√3)))))^2 ))}  so the value of I is known.

1)letI=(x2x+2)x2x+1dxwehavex2x+1=x2212x+14+114=(x12)2+34soweusethechangementx12=32sh(t)I=((12+32sh(t))2(12+32sh(t))+2)32ch(t)dt=32{14(1+23sh(t)+3sh2(t)32sh(t)+212)ch(t)dt=32{32sh(t)+34sh2(t)32sh(t)+74}ch(t)dt=338sh(t)ch(t)dt+738ch(t)dt=3316sh2(t)+738sh(t)+c=3316ch(2t)12+738sh(t)+c=3332{ch(2t)1}+738sh(t)+c.wehavet=argsh(2x13)=ln(2x13+1+(2x13)2)ch(2t)=e2t+e2t2=12{(2x13+1+(2x13)2)2+1(2x13+1+(2x13))2}sh(t)=etet2=12{2x13+1+(2x13)212x13+1+(2x13)2}sothevalueofIisknown.

Commented by mathmax by abdo last updated on 08/Jul/19

2) ∫_0 ^1 (x^2 −x+2)(√(x^2 −x+1))dx =[F(x)]_0 ^1 =F(1)−F(0)  F(1)=((3(√3))/(32)){(1/2)((1/(√3)) +(√(1+(1/3))))^2   +(1/(((1/(√3))+(√(1+(1/3))))^2 ))}−1}  +((7(√3))/(16)){ (1/(√3)) +(√(1+(1/3))) −(1/((1/(√3))+(√(1+(1/3)))))}  F(0) =((3(√3))/(32)){(−(1/3) +(√(1+(1/3))))^2  +(1/((−(1/3) +(√(1+(1/3))))^2 ))}  +((7(√3))/(16)){−(1/(√3)) +(√(1+(1/3)))−(1/(−(1/(√3))+(√(1+(1/3)))))}

2)01(x2x+2)x2x+1dx=[F(x)]01=F(1)F(0)F(1)=3332{12(13+1+13)2+1(13+1+13)2}1}+7316{13+1+13113+1+13}F(0)=3332{(13+1+13)2+1(13+1+13)2}+7316{13+1+13113+1+13}

Commented by mathmax by abdo last updated on 08/Jul/19

F(0) =((3(√3))/(32)){ (−(1/(√3)) +(2/(√3)))^2  +(1/((−(1/(√3))+(2/(√3)))^2 ))}+((7(√3))/(16)){−(1/(√3)) +(2/(√3))  −(1/(−(1/(√3))+(2/(√3))))} =((3(√3))/(32)){  (1/3) +3}+((7(√3))/(16)){ (1/(√3)) −(√3)}

F(0)=3332{(13+23)2+1(13+23)2}+7316{13+23113+23}=3332{13+3}+7316{133}

Answered by MJS last updated on 08/Jul/19

∫(x^2 −x+2)(√(x^2 −x+1))dx=       [t=sinh^(−1)  (((√3)(2x−1))/3) → dx=(√(x^2 −x+1))dt]  =((75)/(128))∫dt+(9/(128))∫cosh 4t dt+((21)/(32))∫cosh 2t dt=  =((75)/(128))t+(9/(512))sinh 4t +((21)/(64))sinh 2t=  =((75)/(128))sinh^(−1)  (((√3)(2x−1))/3) +(1/(64))(2x−1)(8x^2 −8x+5)(√(x^2 −x+1)) +(7/(16))(2x−1)(√(x^2 −x+1))=  =((75)/(128))sinh^(−1)  (((√3)(2x−1))/3) +(1/(64))(2x−1)(8x^2 −8x+33)(√(x^2 −x+1)) +C    ∫_0 ^1 (x^2 −x+2)(√(x^2 −x+1))dx=((33)/(32))+((75)/(64))sinh^(−1)  ((√3)/3) =((33)/(32))+((75)/(128))ln 3

(x2x+2)x2x+1dx=[t=sinh13(2x1)3dx=x2x+1dt]=75128dt+9128cosh4tdt+2132cosh2tdt==75128t+9512sinh4t+2164sinh2t==75128sinh13(2x1)3+164(2x1)(8x28x+5)x2x+1+716(2x1)x2x+1==75128sinh13(2x1)3+164(2x1)(8x28x+33)x2x+1+C10(x2x+2)x2x+1dx=3332+7564sinh133=3332+75128ln3

Commented by Prithwish sen last updated on 08/Jul/19

sir please check mine.I have just try it   another way.

sirpleasecheckmine.Ihavejusttryitanotherway.

Commented by mathmax by abdo last updated on 08/Jul/19

thank you sir mjs.

thankyousirmjs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com