Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 47064 by maxmathsup by imad last updated on 04/Nov/18

1)calculate  u_n =∫_0 ^∞   ((sin(nx))/(sh(2x)))dx  with  n integr natural  2) calculate Σ_(n=0) ^∞  u_n  .

$$\left.\mathrm{1}\right){calculate}\:\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{sh}\left(\mathrm{2}{x}\right)}{dx}\:\:{with}\:\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:. \\ $$

Commented by maxmathsup by imad last updated on 07/Nov/18

1) we have u_n =∫_0 ^∞   ((2sin(nx))/(e^(2x) −e^(−2x) ))dx =2∫_0 ^∞   ((e^(−2x) sin(nx))/(1−e^(−4x) ))dx  =2 ∫_0 ^∞  e^(−2x) sin(nx)(Σ_(p=0) ^∞  e^(−4px) )ex  =2 Σ_(p=0) ^∞ ∫_0 ^∞  e^(−(2+4p)x) sin(nx)dx  =_((2+4p)x=u)   2 Σ_(p=0) ^∞  ∫_0 ^∞  e^(−u)  sin(n(u/(2+4p)))(du/(2+4p))  =Σ_(p=0) ^∞  (1/(2p+1)) ∫_0 ^∞   e^(−u) sin(((nu)/(4p+2)))du  let determine I_λ =∫_0 ^∞  e^(−u)  sin(λu)du (λ>0)  I_λ =Im(∫_0 ^∞  e^(−u+iλu) du)=Im(∫_0 ^∞   e^((−1+iλ)u) du) but  ∫_0 ^∞   e^((−1+iλ)u) du =[(1/(−1+iλ)) e^((−1+iλ)u) ]_0 ^(+∞)  =((−1)/(−1+iλ)) =(1/(1−iλ)) =((1+iλ)/(1+λ^2 )) ⇒  I_λ =(λ/(1+λ^2 )) ⇒u_n =Σ_(p=0) ^∞  (1/(2p+1)) ((n/((4p+2)(1+((n/(4p+2)))^2 ))))  =Σ_(p=0) ^∞   (n/((2p+1)(4p+2 +(n^2 /(4p+2))))) =Σ_(p=0) ^∞ ((n(4p+2))/((2p+1)((4p+2)^2  +n^2 ))) =Σ_(p=0) ^∞ ((2n)/((4p+2)^2  +n^2 ))  u_n  can be calculated by fourier serie ....be continued....

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{sin}\left({nx}\right)}{{e}^{\mathrm{2}{x}} −{e}^{−\mathrm{2}{x}} }{dx}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{x}} {sin}\left({nx}\right)}{\mathrm{1}−{e}^{−\mathrm{4}{x}} }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} {sin}\left({nx}\right)\left(\sum_{{p}=\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{4}{px}} \right){ex} \\ $$$$=\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{2}+\mathrm{4}{p}\right){x}} {sin}\left({nx}\right){dx} \\ $$$$=_{\left(\mathrm{2}+\mathrm{4}{p}\right){x}={u}} \:\:\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:{sin}\left({n}\frac{{u}}{\mathrm{2}+\mathrm{4}{p}}\right)\frac{{du}}{\mathrm{2}+\mathrm{4}{p}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{p}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}} {sin}\left(\frac{{nu}}{\mathrm{4}{p}+\mathrm{2}}\right){du}\:\:{let}\:{determine}\:{I}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:{sin}\left(\lambda{u}\right){du}\:\left(\lambda>\mathrm{0}\right) \\ $$$${I}_{\lambda} ={Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}+{i}\lambda{u}} {du}\right)={Im}\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{i}\lambda\right){u}} {du}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{i}\lambda\right){u}} {du}\:=\left[\frac{\mathrm{1}}{−\mathrm{1}+{i}\lambda}\:{e}^{\left(−\mathrm{1}+{i}\lambda\right){u}} \right]_{\mathrm{0}} ^{+\infty} \:=\frac{−\mathrm{1}}{−\mathrm{1}+{i}\lambda}\:=\frac{\mathrm{1}}{\mathrm{1}−{i}\lambda}\:=\frac{\mathrm{1}+{i}\lambda}{\mathrm{1}+\lambda^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}_{\lambda} =\frac{\lambda}{\mathrm{1}+\lambda^{\mathrm{2}} }\:\Rightarrow{u}_{{n}} =\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{p}+\mathrm{1}}\:\left(\frac{{n}}{\left(\mathrm{4}{p}+\mathrm{2}\right)\left(\mathrm{1}+\left(\frac{{n}}{\mathrm{4}{p}+\mathrm{2}}\right)^{\mathrm{2}} \right)}\right) \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{{n}}{\left(\mathrm{2}{p}+\mathrm{1}\right)\left(\mathrm{4}{p}+\mathrm{2}\:+\frac{{n}^{\mathrm{2}} }{\mathrm{4}{p}+\mathrm{2}}\right)}\:=\sum_{{p}=\mathrm{0}} ^{\infty} \frac{{n}\left(\mathrm{4}{p}+\mathrm{2}\right)}{\left(\mathrm{2}{p}+\mathrm{1}\right)\left(\left(\mathrm{4}{p}+\mathrm{2}\right)^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)}\:=\sum_{{p}=\mathrm{0}} ^{\infty} \frac{\mathrm{2}{n}}{\left(\mathrm{4}{p}+\mathrm{2}\right)^{\mathrm{2}} \:+{n}^{\mathrm{2}} } \\ $$$${u}_{{n}} \:{can}\:{be}\:{calculated}\:{by}\:{fourier}\:{serie}\:....{be}\:{continued}.... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com