Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45599 by maxmathsup by imad last updated on 14/Oct/18

1) calculate A_n = ∫_0 ^n     (((−1)^([x]) )/(2x+1−[x]))dx  2) find lim_(n→+∞) A_n   3) study the serie  Σ A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{2}{x}+\mathrm{1}−\left[{x}\right]}{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\:\Sigma\:{A}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 21/Oct/18

1) we have A_n =Σ_(k=0) ^(n−1)    ∫_k ^(k+1)    (((−1)^k )/(2x+1−k))dx  =Σ_(k=0) ^(n−1)  (−1)^k  ∫_k ^(k+1)    (dx/(2x+1−k)) =Σ_(k=0) ^(n−1)  (((−1)^k )/2)[ln∣2x+1−k∣]_k ^(k+1)   =Σ_(k=0) ^(n−1)    (((−1^k )/2){ln(k+3)−ln(k+1)}  =Σ_(k=0) ^(n−1)   (((−1)^k )/2)ln(((k+3)/(k+1)))⇒  A_n =(1/2){ln(3)−ln(2) +ln((5/3))−ln((6/4))+...(−1)^(n−1) ln(((n+2)/n))}

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{x}+\mathrm{1}−{k}}{dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left(−\mathrm{1}\right)^{{k}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{2}{x}+\mathrm{1}−{k}}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}}\left[{ln}\mid\mathrm{2}{x}+\mathrm{1}−{k}\mid\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}^{{k}} \right.}{\mathrm{2}}\left\{{ln}\left({k}+\mathrm{3}\right)−{ln}\left({k}+\mathrm{1}\right)\right\} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}}{ln}\left(\frac{{k}+\mathrm{3}}{{k}+\mathrm{1}}\right)\Rightarrow \\ $$$${A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right)\:+{ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)−{ln}\left(\frac{\mathrm{6}}{\mathrm{4}}\right)+...\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {ln}\left(\frac{{n}+\mathrm{2}}{{n}}\right)\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com