Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 53500 by Otchere Abdullai last updated on 22/Jan/19

1. If  (√((x+2)^(2 ) +y^2 ))+(√((x−2)^2 +y^2 ))=6  show that when the equation is   simplified, it can be express as  (x^2 /9)+(y^2 /5)=1  2. find the value of n such that the  linear factors of the form x+ay+b   and x+cy+d with integer coefficients  have the product x^2 +5xy+x+ny−n  sir please help

$$\mathrm{1}.\:{If}\:\:\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}\:} +{y}^{\mathrm{2}} }+\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{6} \\ $$$${show}\:{that}\:{when}\:{the}\:{equation}\:{is}\: \\ $$$${simplified},\:{it}\:{can}\:{be}\:{express}\:{as} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$$$\mathrm{2}.\:{find}\:{the}\:{value}\:{of}\:{n}\:{such}\:{that}\:{the} \\ $$$${linear}\:{factors}\:{of}\:{the}\:{form}\:{x}+{ay}+{b}\: \\ $$$${and}\:{x}+{cy}+{d}\:{with}\:{integer}\:{coefficients} \\ $$$${have}\:{the}\:{product}\:{x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${sir}\:{please}\:{help} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

(√((x+2)^2 +y^2 )) =6−(√((x−2)^2 +y^2 ))   x^2 +4x+4+y^2 =36−12(√((x−2)^2 +y^2 )) +x^2 −4x+4+y^2   cancelling x^2 ,y^2 ,4 from both side  4x=36−12(√(x^2 −4x+4+y^2 )) −4x  8x−36=−12(√(x^2 −4x+4+y^2 ))   2x−9=−3(√(x^2 −4x+4+y^2 ))   4x^2 −36x+81=9x^2 −36x+36+9y^2   5x^2 +9y^2 =45  (x^2 /9)+(y^2 /5)=1

$$\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:=\mathrm{6}−\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\: \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} =\mathrm{36}−\mathrm{12}\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:+{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} \\ $$$${cancelling}\:{x}^{\mathrm{2}} ,{y}^{\mathrm{2}} ,\mathrm{4}\:{from}\:{both}\:{side} \\ $$$$\mathrm{4}{x}=\mathrm{36}−\mathrm{12}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\:−\mathrm{4}{x} \\ $$$$\mathrm{8}{x}−\mathrm{36}=−\mathrm{12}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\: \\ $$$$\mathrm{2}{x}−\mathrm{9}=−\mathrm{3}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{36}{x}+\mathrm{81}=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{36}{x}+\mathrm{36}+\mathrm{9}{y}^{\mathrm{2}} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} =\mathrm{45} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$

Commented by Otchere Abdullai last updated on 22/Jan/19

wow! thank you sir God bless you

$${wow}!\:{thank}\:{you}\:{sir}\:{God}\:{bless}\:{you} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

2)(x+ay+b)(x+cy+d)=x^2 +5xy+x+ny−n  x^2 +cxy+xd+axy+acy^2 +ayd+bx+bcy+bd=x^2 +5xy+x+ny−n  x^2 +xy(a+c)+x(b+d)+y(ad+bc)+acy^2 +bd=x^2 +5xy+x+ny−n  so  a+c=5  b+d=1  ad+bc=n  ac=0  bd=−n  ac=0  a(5−a)=0   either a=0 or a=5  when  a=0  c=5  and when a=5  c=0  now let a=0  c.=5  ad+bc=n  0×d+b×5=n   [b=(n/5)]  a=0  b=(n/5)  c=5  d=1−b=1−(n/5)  bd=−n  ((n/5))×(1−(n/5))=−n  (1/5)×(((5−n)/5))=−1  5−n=−25  −n=−30 ...n=30

$$\left.\mathrm{2}\right)\left({x}+{ay}+{b}\right)\left({x}+{cy}+{d}\right)={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${x}^{\mathrm{2}} +{cxy}+{xd}+{axy}+{acy}^{\mathrm{2}} +{ayd}+{bx}+{bcy}+{bd}={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${x}^{\mathrm{2}} +{xy}\left({a}+{c}\right)+{x}\left({b}+{d}\right)+{y}\left({ad}+{bc}\right)+{acy}^{\mathrm{2}} +{bd}={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${so} \\ $$$${a}+{c}=\mathrm{5} \\ $$$${b}+{d}=\mathrm{1} \\ $$$${ad}+{bc}={n} \\ $$$${ac}=\mathrm{0} \\ $$$${bd}=−{n} \\ $$$${ac}=\mathrm{0} \\ $$$${a}\left(\mathrm{5}−{a}\right)=\mathrm{0}\:\:\:{either}\:{a}=\mathrm{0}\:{or}\:{a}=\mathrm{5} \\ $$$${when}\:\:{a}=\mathrm{0}\:\:{c}=\mathrm{5}\:\:{and}\:{when}\:{a}=\mathrm{5}\:\:{c}=\mathrm{0} \\ $$$${now}\:{let}\:{a}=\mathrm{0}\:\:{c}.=\mathrm{5} \\ $$$${ad}+{bc}={n} \\ $$$$\mathrm{0}×{d}+{b}×\mathrm{5}={n}\:\:\:\left[{b}=\frac{{n}}{\mathrm{5}}\right] \\ $$$${a}=\mathrm{0} \\ $$$${b}=\frac{{n}}{\mathrm{5}} \\ $$$${c}=\mathrm{5} \\ $$$${d}=\mathrm{1}−{b}=\mathrm{1}−\frac{{n}}{\mathrm{5}} \\ $$$${bd}=−{n} \\ $$$$\left(\frac{{n}}{\mathrm{5}}\right)×\left(\mathrm{1}−\frac{{n}}{\mathrm{5}}\right)=−{n} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}×\left(\frac{\mathrm{5}−{n}}{\mathrm{5}}\right)=−\mathrm{1} \\ $$$$\mathrm{5}−{n}=−\mathrm{25} \\ $$$$−{n}=−\mathrm{30}\:...{n}=\mathrm{30} \\ $$$$ \\ $$

Commented by Otchere Abdullai last updated on 22/Jan/19

powerful  Mathematician! We thank  God for having you in the group  God bless you sir!

$${powerful}\:\:{Mathematician}!\:{We}\:{thank} \\ $$$${God}\:{for}\:{having}\:{you}\:{in}\:{the}\:{group} \\ $$$${God}\:{bless}\:{you}\:{sir}! \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

mathematics...activates ones mind to think...

$${mathematics}...{activates}\:{ones}\:{mind}\:{to}\:{think}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com