Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 77126 by peter frank last updated on 03/Jan/20

1)Express (x/((1−x)^4 ))   in  partial fraction  2) Solve  xdy+ydy−(((xdx−ydy)/(x^2 +y^2 )))=0

$$\left.\mathrm{1}\right){Express}\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }\:\:\:{in} \\ $$$${partial}\:{fraction} \\ $$$$\left.\mathrm{2}\right)\:{Solve} \\ $$$${xdy}+{ydy}−\left(\frac{{xdx}−{ydy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$ \\ $$

Answered by jagoll last updated on 03/Jan/20

1) (x/((1−x)^4 ))=(a/(1−x))+(b/((1−x)^2 ))+(c/((1−x)^3 ))+(d/((1−x)^4 ))  x=a(1−x)^3 +b(1−x)^2 +c(1−x)+d  put x = 1 ⇒ d = 1  x= 0 ⇒ a+b+c=−1  x=2 ⇒ −a+b−c=1  x=−1 ⇒ 4a+2b+c=−1  then we get a = 0 , b = 0 , c −1  therefore (x/((1−x)^4 ))= (1/((1−x)^4 ))−(1/((1−x)^3 ))

$$\left.\mathrm{1}\right)\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }=\frac{{a}}{\mathrm{1}−{x}}+\frac{{b}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{{c}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }+\frac{{d}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$${x}={a}\left(\mathrm{1}−{x}\right)^{\mathrm{3}} +{b}\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +{c}\left(\mathrm{1}−{x}\right)+{d} \\ $$$${put}\:{x}\:=\:\mathrm{1}\:\Rightarrow\:{d}\:=\:\mathrm{1} \\ $$$${x}=\:\mathrm{0}\:\Rightarrow\:{a}+{b}+{c}=−\mathrm{1} \\ $$$${x}=\mathrm{2}\:\Rightarrow\:−{a}+{b}−{c}=\mathrm{1} \\ $$$${x}=−\mathrm{1}\:\Rightarrow\:\mathrm{4}{a}+\mathrm{2}{b}+{c}=−\mathrm{1} \\ $$$${then}\:{we}\:{get}\:{a}\:=\:\mathrm{0}\:,\:{b}\:=\:\mathrm{0}\:,\:{c}\:−\mathrm{1} \\ $$$${therefore}\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }−\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$

Commented by peter frank last updated on 03/Jan/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com