Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 47239 by JDlix last updated on 06/Nov/18

((1.8×10^6 )/(tan(89.9999°))) ∼ π (upto 9 decimal places)  can i have some explanations how it is worked out ?  Thank you!

$$\frac{\mathrm{1}.\mathrm{8}×\mathrm{10}^{\mathrm{6}} }{{tan}\left(\mathrm{89}.\mathrm{9999}°\right)}\:\sim\:\pi\:\left({upto}\:\mathrm{9}\:{decimal}\:{places}\right) \\ $$$${can}\:{i}\:{have}\:{some}\:{explanations}\:{how}\:{it}\:{is}\:{worked}\:{out}\:? \\ $$$${Thank}\:{you}! \\ $$

Commented by MJS last updated on 07/Nov/18

I guess somebody just messed around a bit.  you can find many almost−identities  πln (π) =((143851)/(40000)) (error ≈−2.7×10^(−10) )  πln (πln (π)) =((100523)/(25000)) (error ≈−2.6×10^(−10) )  π=((6955380174−(√3))/(2213966271)) (error ≈−5×10^(−13) )

$$\mathrm{I}\:\mathrm{guess}\:\mathrm{somebody}\:\mathrm{just}\:\mathrm{messed}\:\mathrm{around}\:\mathrm{a}\:\mathrm{bit}. \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:\mathrm{many}\:\mathrm{almost}−\mathrm{identities} \\ $$$$\pi\mathrm{ln}\:\left(\pi\right)\:=\frac{\mathrm{143851}}{\mathrm{40000}}\:\left(\mathrm{error}\:\approx−\mathrm{2}.\mathrm{7}×\mathrm{10}^{−\mathrm{10}} \right) \\ $$$$\pi\mathrm{ln}\:\left(\pi\mathrm{ln}\:\left(\pi\right)\right)\:=\frac{\mathrm{100523}}{\mathrm{25000}}\:\left(\mathrm{error}\:\approx−\mathrm{2}.\mathrm{6}×\mathrm{10}^{−\mathrm{10}} \right) \\ $$$$\pi=\frac{\mathrm{6955380174}−\sqrt{\mathrm{3}}}{\mathrm{2213966271}}\:\left(\mathrm{error}\:\approx−\mathrm{5}×\mathrm{10}^{−\mathrm{13}} \right) \\ $$

Answered by MJS last updated on 07/Nov/18

tan ((90−(1/(10^d )))°)=(1/(tan (π/(180×10^d ))))≈((180×10^d )/π) with d∈N

$$\mathrm{tan}\:\left(\left(\mathrm{90}−\frac{\mathrm{1}}{\mathrm{10}^{{d}} }\right)°\right)=\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\pi}{\mathrm{180}×\mathrm{10}^{{d}} }}\approx\frac{\mathrm{180}×\mathrm{10}^{{d}} }{\pi}\:\mathrm{with}\:{d}\in\mathbb{N} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com