Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139800 by bramlexs22 last updated on 01/May/21

(1/3)+(6/(21))+((11)/(147))+((16)/(1029))+((21)/(7203))+((26)/(50421))+…=?

$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{6}}{\mathrm{21}}+\frac{\mathrm{11}}{\mathrm{147}}+\frac{\mathrm{16}}{\mathrm{1029}}+\frac{\mathrm{21}}{\mathrm{7203}}+\frac{\mathrm{26}}{\mathrm{50421}}+\ldots=? \\ $$

Answered by EDWIN88 last updated on 01/May/21

Jakob Bernoulli′s sumation  (a/b)+((a+c)/(bd))+((a+2c)/(bd^2 ))+((a+3c)/(bd^3 ))+((a+4c)/(bd^4 )) +^  …=   ((d(ad−a+c))/(b(d^2 −2d+1))) = ((7(1.7−1+5))/(3(49−14+1))) = ((77)/(108))  in your case  { ((a=1 ; b=3)),((c=5 ; d=7)) :}

$$\mathrm{Jakob}\:\mathrm{Bernoulli}'\mathrm{s}\:\mathrm{sumation} \\ $$$$\frac{{a}}{{b}}+\frac{{a}+{c}}{{bd}}+\frac{{a}+\mathrm{2}{c}}{{bd}^{\mathrm{2}} }+\frac{{a}+\mathrm{3}{c}}{{bd}^{\mathrm{3}} }+\frac{{a}+\mathrm{4}{c}}{{bd}^{\mathrm{4}} }\:\ddot {+}\ldots= \\ $$$$\:\frac{{d}\left({ad}−{a}+{c}\right)}{{b}\left({d}^{\mathrm{2}} −\mathrm{2}{d}+\mathrm{1}\right)}\:=\:\frac{\mathrm{7}\left(\mathrm{1}.\mathrm{7}−\mathrm{1}+\mathrm{5}\right)}{\mathrm{3}\left(\mathrm{49}−\mathrm{14}+\mathrm{1}\right)}\:=\:\frac{\mathrm{77}}{\mathrm{108}} \\ $$$${in}\:{your}\:{case}\:\begin{cases}{{a}=\mathrm{1}\:;\:{b}=\mathrm{3}}\\{{c}=\mathrm{5}\:;\:{d}=\mathrm{7}}\end{cases} \\ $$

Commented by mohammad17 last updated on 01/May/21

sir whats low lf Jakob Bernoullis   i want this low can you help me

$${sir}\:{whats}\:{low}\:{lf}\:{Jakob}\:{Bernoullis}\: \\ $$$${i}\:{want}\:{this}\:{low}\:{can}\:{you}\:{help}\:{me} \\ $$$$ \\ $$

Answered by qaz last updated on 01/May/21

S=(1/3)+(6/(3∙7))+((11)/(3∙7^2 ))+((16)/(3∙7^3 ))+...  =Σ_(n=0) ^∞ ((5n+1)/(3∙7^n ))=((5xD+1)/3)∣_(x=(1/7)) Σ_(n=0) ^∞ x^n   =((5xD+1)/3)∣_(x=(1/7)) (1/(1−x))=(1/3)∣_(x=(1/7)) (((5x)/((1−x)^2 ))+(1/(1−x)))  =((77)/(108))

$${S}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{6}}{\mathrm{3}\centerdot\mathrm{7}}+\frac{\mathrm{11}}{\mathrm{3}\centerdot\mathrm{7}^{\mathrm{2}} }+\frac{\mathrm{16}}{\mathrm{3}\centerdot\mathrm{7}^{\mathrm{3}} }+... \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{5}{n}+\mathrm{1}}{\mathrm{3}\centerdot\mathrm{7}^{{n}} }=\frac{\mathrm{5}{xD}+\mathrm{1}}{\mathrm{3}}\mid_{{x}=\frac{\mathrm{1}}{\mathrm{7}}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \\ $$$$=\frac{\mathrm{5}{xD}+\mathrm{1}}{\mathrm{3}}\mid_{{x}=\frac{\mathrm{1}}{\mathrm{7}}} \frac{\mathrm{1}}{\mathrm{1}−{x}}=\frac{\mathrm{1}}{\mathrm{3}}\mid_{{x}=\frac{\mathrm{1}}{\mathrm{7}}} \left(\frac{\mathrm{5}{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{x}}\right) \\ $$$$=\frac{\mathrm{77}}{\mathrm{108}} \\ $$

Commented by bramlexs22 last updated on 01/May/21

answer ((77)/(108))

$$\mathrm{answer}\:\frac{\mathrm{77}}{\mathrm{108}} \\ $$

Commented by qaz last updated on 01/May/21

i got a mistake

$${i}\:{got}\:{a}\:{mistake} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com