Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140890 by mathsuji last updated on 13/May/21

1+2x+3x^2 +4x^3 +...+(n+1)x^n =?

$$\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...+\left({n}+\mathrm{1}\right){x}^{\boldsymbol{{n}}} =? \\ $$

Answered by ajfour last updated on 14/May/21

x+x^2 +x^3 +...+x^(n+1) =((1−x^(n+2) )/(1−x))  differentiating  wrt  x   1+2x+3x^2 +...+(n+1)x^(n+1)     =(((x−1)(n+2)x^(n+1) +1−x^(n+2) )/((1−x)^2 ))    =((1−(n+2)x^(n+1) +(n+1)x^(n+2) )/((1−x)^2 ))

$${x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{{n}+\mathrm{1}} =\frac{\mathrm{1}−{x}^{{n}+\mathrm{2}} }{\mathrm{1}−{x}} \\ $$$${differentiating}\:\:{wrt}\:\:{x} \\ $$$$\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +...+\left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{1}} \\ $$$$\:\:=\frac{\left({x}−\mathrm{1}\right)\left({n}+\mathrm{2}\right){x}^{{n}+\mathrm{1}} +\mathrm{1}−{x}^{{n}+\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$\:\:=\frac{\mathrm{1}−\left({n}+\mathrm{2}\right){x}^{{n}+\mathrm{1}} +\left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\: \\ $$

Commented by mathsuji last updated on 15/May/21

thaks Sir

$${thaks}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com