Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41651 by rahul 19 last updated on 10/Aug/18

∫( 1+2x+3x^2 +4x^3 +.........) dx ,     (0<∣x∣<1)

$$\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +.........\right)\:{dx}\:,\:\:\: \\ $$$$\left(\mathrm{0}<\mid{x}\mid<\mathrm{1}\right) \\ $$

Commented by maxmathsup by imad last updated on 10/Aug/18

∫ (1+2x+3x^2 +4x^3 +...)dx = ∫( Σ_(n=1) ^∞  nx^(n−1) )dx  =Σ_(n=1) ^∞   n ∫  x^(n−1) dx =Σ_(n=1) ^∞  x^n  =(1/(1−x)) −1  +c = (x/(x−1)) +c    with ∣x∣<1 .

$$\int\:\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...\right){dx}\:=\:\int\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}−\mathrm{1}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{n}\:\int\:\:{x}^{{n}−\mathrm{1}} {dx}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:−\mathrm{1}\:\:+{c}\:=\:\frac{{x}}{{x}−\mathrm{1}}\:+{c}\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Answered by alex041103 last updated on 10/Aug/18

1+2x+3x^2 +...=Σ_(n=0) ^∞ (n+1)x^n   ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =  =∫Σ_(n=0) ^∞ (n+1)x^n  dx=Σ_(n=0) ^∞ ∫(n+1)x^n dx=  =C+Σ_(n=0) ^∞ ((n+1)/(n+1))x^(n+1) =C+Σ_(n=0) ^∞ x^(n+1) =  =C+(Σ_(n=0) ^∞ x^n ) −1=(Σ_(n=0) ^∞ x^n )+C_1   For ∣x∣<1: Σ_(n=0) ^∞ x^n =(1/(1−x))  ⇒∫( 1+2x+3x^2 +4x^3 +.........) dx =(1/(1−x))+C

$$\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +...=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$$$\Rightarrow\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +.........\right)\:{dx}\:= \\ $$$$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \:{dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int\left({n}+\mathrm{1}\right){x}^{{n}} {dx}= \\ $$$$={C}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} ={C}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}+\mathrm{1}} = \\ $$$$={C}+\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \right)\:−\mathrm{1}=\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \right)+{C}_{\mathrm{1}} \\ $$$${For}\:\mid{x}\mid<\mathrm{1}:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\int\left(\:\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +.........\right)\:{dx}\:=\frac{\mathrm{1}}{\mathrm{1}−{x}}+{C} \\ $$

Commented by rahul 19 last updated on 10/Aug/18

thanks sir!

$$\mathrm{thanks}\:\mathrm{sir}! \\ $$

Answered by rahul 19 last updated on 10/Aug/18

∫ (d/dx)(x+x^2 +x^3 +.........)dx   ⇒ x+x^2 +x^3 +..........  ⇒(x/(1−x)).  What′s wrong in this?

$$\int\:\frac{\mathrm{d}}{\mathrm{d}{x}}\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.........\right){dx}\: \\ $$$$\Rightarrow\:{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.......... \\ $$$$\Rightarrow\frac{{x}}{\mathrm{1}−{x}}. \\ $$$${W}\mathrm{hat}'\mathrm{s}\:\mathrm{wrong}\:\mathrm{in}\:\mathrm{this}? \\ $$

Commented by alex041103 last updated on 10/Aug/18

Nothing is wrong. If you look more  carefully yoi will see that:  (x/(1−x))=−((1−x −1)/(1−x))=−(((1−x)/(1−x))−(1/(1−x)))=  =(1/(1+x))−1=(1/(1+x))+C  As you can see the integration constant  is sth very imortant

$${Nothing}\:{is}\:{wrong}.\:{If}\:{you}\:{look}\:{more} \\ $$$${carefully}\:{yoi}\:{will}\:{see}\:{that}: \\ $$$$\frac{{x}}{\mathrm{1}−{x}}=−\frac{\mathrm{1}−{x}\:−\mathrm{1}}{\mathrm{1}−{x}}=−\left(\frac{\mathrm{1}−{x}}{\mathrm{1}−{x}}−\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{x}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+{x}}+{C} \\ $$$${As}\:{you}\:{can}\:{see}\:{the}\:{integration}\:{constant} \\ $$$${is}\:{sth}\:{very}\:{imortant} \\ $$

Commented by rahul 19 last updated on 10/Aug/18

ohh, yes u r right sir!

$$\mathrm{ohh},\:\mathrm{yes}\:\mathrm{u}\:\mathrm{r}\:\mathrm{right}\:\mathrm{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com