Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 130555 by Dwaipayan Shikari last updated on 26/Jan/21

(1/((2−π)^2 ))+(1/((2+π)^2 ))+(1/((6−π)^2 ))+(1/((6+π)^2 ))+(1/((10−π)^2 ))+(1/((10+π)^2 ))+..=(π^2 /(16))sec^2 ((π^2 /4))  Prove or disprove

$$\frac{\mathrm{1}}{\left(\mathrm{2}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}+\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{6}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{6}+\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{10}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{10}+\pi\right)^{\mathrm{2}} }+..=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}{sec}^{\mathrm{2}} \left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$${Prove}\:{or}\:{disprove} \\ $$

Answered by mindispower last updated on 27/Jan/21

S=Σ_(k≥0) (1/((4k+2−π)^2 ))+(1/((4k+2+π)^2 ))=(1/(16))Σ_(k≥0) (1/((k+((2−π)/4))^2 ))+(1/((k+((2+π)/4))^2 ))  cot(x)=(1/x)+Σ_(n≥1) (1/((x−πn)))+(1/((x+πn)))  ⇒tg(πx)=cot((π/2)−x)=(2/(π−2x))+Σ_(n≥1) (2/(π−2x−2πn))+(2/(π−2x+2πn))  ⇒1+tg^2 (x)=(4/((π−2x)^2 ))+Σ_(n≥1) (4/((π−2x−2πn)^2 ))+(4/((π−2x+2πn)^2 ))=H  x=(π^2 /4)  ⇒H=(4/((π−(π^2 /2))^2 ))+Σ_(n≥1) (4/((π−(π^2 /2)−2πn)))+(4/((π−(π^2 /2)+2πn)^2 ))=A+B  B=Σ_(n≥0) {(4/((−π−(π^2 /2)−2nπ)^2 ))+(4/((π+2πn−(π^2 /2))^2 ))}−(4/((π−(π^2 /2))^2 ))  =(1/π^2 )Σ_(n≥0) (1/((((2+π)/4)+n)^2 ))+(1/((n+((2−π)/4))^2 ))−(4/((π−(π^2 /2))))  =((16)/π^2 )S−(4/((π−(π^2 /2))^2 ))=sec^2 ((π^2 /4))−(4/((π−(π^2 /2))^2 ))  ⇒S=(π^2 /(16))sec^2 ((π^2 /4))

$${S}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{4}{k}+\mathrm{2}−\pi\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{4}{k}+\mathrm{2}+\pi\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{16}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{2}−\pi}{\mathrm{4}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{2}+\pi}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$${cot}\left({x}\right)=\frac{\mathrm{1}}{{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({x}−\pi{n}\right)}+\frac{\mathrm{1}}{\left({x}+\pi{n}\right)} \\ $$$$\Rightarrow{tg}\left(\pi{x}\right)={cot}\left(\frac{\pi}{\mathrm{2}}−{x}\right)=\frac{\mathrm{2}}{\pi−\mathrm{2}{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}}{\pi−\mathrm{2}{x}−\mathrm{2}\pi{n}}+\frac{\mathrm{2}}{\pi−\mathrm{2}{x}+\mathrm{2}\pi{n}} \\ $$$$\Rightarrow\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)=\frac{\mathrm{4}}{\left(\pi−\mathrm{2}{x}\right)^{\mathrm{2}} }+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{4}}{\left(\pi−\mathrm{2}{x}−\mathrm{2}\pi{n}\right)^{\mathrm{2}} }+\frac{\mathrm{4}}{\left(\pi−\mathrm{2}{x}+\mathrm{2}\pi{n}\right)^{\mathrm{2}} }={H} \\ $$$${x}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow{H}=\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} }+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\pi{n}\right)}+\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}\pi{n}\right)^{\mathrm{2}} }={A}+{B} \\ $$$${B}=\underset{{n}\geqslant\mathrm{0}} {\sum}\left\{\frac{\mathrm{4}}{\left(−\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{n}\pi\right)^{\mathrm{2}} }+\frac{\mathrm{4}}{\left(\pi+\mathrm{2}\pi{n}−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} }\right\}−\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\frac{\mathrm{2}+\pi}{\mathrm{4}}+{n}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{2}−\pi}{\mathrm{4}}\right)^{\mathrm{2}} }−\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{16}}{\pi^{\mathrm{2}} }{S}−\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} }={sec}^{\mathrm{2}} \left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right)−\frac{\mathrm{4}}{\left(\pi−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{S}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}{sec}^{\mathrm{2}} \left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 27/Jan/21

Great sir! I had posted this problem on Brilliant.You could  check their also

$${Great}\:{sir}!\:{I}\:{had}\:{posted}\:{this}\:{problem}\:{on}\:{Brilliant}.{You}\:{could} \\ $$$${check}\:{their}\:{also} \\ $$

Commented by mindispower last updated on 27/Jan/21

withe pleasur sir i have not yet Brilliant

$${withe}\:{pleasur}\:{sir}\:{i}\:{have}\:{not}\:{yet}\:{Brilliant} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com