Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 100482 by Dwaipayan Shikari last updated on 26/Jun/20

(√(1(√(2(√(3(√(4(√(5(√(6(√7))))))))))))).....∞=???????

$$\sqrt{\mathrm{1}\sqrt{\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}}}}}}}}.....\infty=??????? \\ $$

Answered by floor(10²Eta[1]) last updated on 27/Jun/20

(√(√(1.2(√(3(√(4(√(5(√(6(√(7...(√n))))))))))))))  (√(√(√(1.2^2 .3(√(4(√(5(√(6(√(7...(√n)))))))))))))  (√(√(√(√(1.2^2 .3^2 .4(√(5(√(6(√(7...(√n))))))))))))  ...=^2^n  (√(1.2^2 .3^2 ...(n−1)^2 n))  =^2^n  (√(n!(n−1)!))  when you take the limit as n  approaches infinite the result is 1  (wolfram alpha)

$$\sqrt{\sqrt{\mathrm{1}.\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}...\sqrt{{n}}}}}}}}} \\ $$$$\sqrt{\sqrt{\sqrt{\mathrm{1}.\mathrm{2}^{\mathrm{2}} .\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}...\sqrt{{n}}}}}}}}} \\ $$$$\sqrt{\sqrt{\sqrt{\sqrt{\mathrm{1}.\mathrm{2}^{\mathrm{2}} .\mathrm{3}^{\mathrm{2}} .\mathrm{4}\sqrt{\mathrm{5}\sqrt{\mathrm{6}\sqrt{\mathrm{7}...\sqrt{{n}}}}}}}}} \\ $$$$...=^{\mathrm{2}^{{n}} } \sqrt{\mathrm{1}.\mathrm{2}^{\mathrm{2}} .\mathrm{3}^{\mathrm{2}} ...\left({n}−\mathrm{1}\right)^{\mathrm{2}} {n}} \\ $$$$=^{\mathrm{2}^{{n}} } \sqrt{{n}!\left({n}−\mathrm{1}\right)!} \\ $$$${when}\:{you}\:{take}\:{the}\:{limit}\:{as}\:{n} \\ $$$${approaches}\:{infinite}\:{the}\:{result}\:{is}\:\mathrm{1} \\ $$$$\left({wolfram}\:{alpha}\right) \\ $$

Commented by bachamohamed last updated on 27/Jun/20

this solution is not correct because  there is an error because   (√(1(√(2(√(3(√(4(√(5(√(.....))))))))))))≠^2^n  (√(1^2 .2^2 .3^2 ..(n−1)^2 n^2 ))  but   (√(1(√(2(√(3(√(...∞))))))))=^2^n  (√(1^2^(n−1)  .2^2^(n−2)  .3^2^(n−3)  ....(n−1)^2^  .n))

$${this}\:{solution}\:{is}\:{not}\:{correct}\:{because} \\ $$$${there}\:{is}\:{an}\:{error}\:{because}\: \\ $$$$\sqrt{\mathrm{1}\sqrt{\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{4}\sqrt{\mathrm{5}\sqrt{.....}}}}}}\neq^{\mathrm{2}^{\mathrm{n}} } \sqrt{\mathrm{1}^{\mathrm{2}} .\mathrm{2}^{\mathrm{2}} .\mathrm{3}^{\mathrm{2}} ..\left({n}−\mathrm{1}\right)^{\mathrm{2}} {n}^{\mathrm{2}} } \\ $$$${but}\: \\ $$$$\sqrt{\mathrm{1}\sqrt{\mathrm{2}\sqrt{\mathrm{3}\sqrt{...\infty}}}}=^{\mathrm{2}^{{n}} } \sqrt{\mathrm{1}^{\mathrm{2}^{{n}−\mathrm{1}} } .\mathrm{2}^{\mathrm{2}^{{n}−\mathrm{2}} } .\mathrm{3}^{\mathrm{2}^{{n}−\mathrm{3}} } ....\left({n}−\mathrm{1}\right)^{\mathrm{2}^{} } .{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com