Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6353 by sanusihammed last updated on 24/Jun/16

1^2  + 3^2  + 5^2  + ......... + (2n − 1)^2  = (n/3)(4n^(2 ) − 1)

$$\mathrm{1}^{\mathrm{2}} \:+\:\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2}} \:+\:.........\:+\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\frac{{n}}{\mathrm{3}}\left(\mathrm{4}{n}^{\mathrm{2}\:} −\:\mathrm{1}\right) \\ $$

Commented by prakash jain last updated on 24/Jun/16

(k/3)(4k^2 −1)+[2(k+1)−1]^2   =(k/3)(4k^2 −1)+(2k+1)^2   =(1/3)[4k^3 −k+12k^2 +12k+3]  =(1/3)[4k^3 +12k^2 +11k+3]  =(1/3)[4k^3 +4k^2 +8k^2 +8k+3k+3]  =((k+1)/3)[4k^2 +8k+3]  =((k+1)/3)[4k^2 +8k+4−1]  =((k+1)/3)[4(k+1)^2 −1]  ■

$$\frac{{k}}{\mathrm{3}}\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}\right)+\left[\mathrm{2}\left({k}+\mathrm{1}\right)−\mathrm{1}\right]^{\mathrm{2}} \\ $$$$=\frac{{k}}{\mathrm{3}}\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}\right)+\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} −{k}+\mathrm{12}{k}^{\mathrm{2}} +\mathrm{12}{k}+\mathrm{3}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} +\mathrm{12}{k}^{\mathrm{2}} +\mathrm{11}{k}+\mathrm{3}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{3}} +\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{3}{k}+\mathrm{3}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{3}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{4}−\mathrm{1}\right] \\ $$$$=\frac{{k}+\mathrm{1}}{\mathrm{3}}\left[\mathrm{4}\left({k}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$$\blacksquare \\ $$

Commented by sanusihammed last updated on 25/Jun/16

Thanks

$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com