Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140090 by mathdanisur last updated on 04/May/21

(1/2^1 )+(3/2^3 )+(5/2^5 )+(7/2^7 )+..=?

$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }+\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{7}}{\mathrm{2}^{\mathrm{7}} }+..=? \\ $$

Answered by qaz last updated on 04/May/21

S=Σ_(n=0) ^∞ ((2n+1)/2^(2n+1) )=Σ_(n=0) ^∞ (1/4^n )(n+(1/2))  =(xD+(1/2))∣_(x=1/4) Σ_(n=0) ^∞ x^n =(xD+(1/2))∣_(x=1/4) (1/(1−x))  =[(x/((1−x)^2 ))+(1/(2(1−x)))]_(x=1/4) =((10)/9)

$${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}} }\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\left({xD}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mid_{{x}=\mathrm{1}/\mathrm{4}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\left({xD}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mid_{{x}=\mathrm{1}/\mathrm{4}} \frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$=\left[\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−{x}\right)}\right]_{{x}=\mathrm{1}/\mathrm{4}} =\frac{\mathrm{10}}{\mathrm{9}} \\ $$

Commented by mathdanisur last updated on 04/May/21

cool thakyou sir

$${cool}\:{thakyou}\:{sir} \\ $$

Answered by EDWIN88 last updated on 04/May/21

Jakob Bernoulli′s summation   (1/2)+((1+2)/(2.4))+((1+2.2)/(2.4^2 ))+((1+3.2)/(2.4^3 ))+...= ((4(1.4−1+2))/(2(4^2 −8+1)))  =((4(5))/(2(9)))=((10)/9)

$$\mathrm{Jakob}\:\mathrm{Bernoulli}'\mathrm{s}\:\mathrm{summation}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}+\mathrm{2}}{\mathrm{2}.\mathrm{4}}+\frac{\mathrm{1}+\mathrm{2}.\mathrm{2}}{\mathrm{2}.\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}+\mathrm{3}.\mathrm{2}}{\mathrm{2}.\mathrm{4}^{\mathrm{3}} }+...=\:\frac{\mathrm{4}\left(\mathrm{1}.\mathrm{4}−\mathrm{1}+\mathrm{2}\right)}{\mathrm{2}\left(\mathrm{4}^{\mathrm{2}} −\mathrm{8}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{4}\left(\mathrm{5}\right)}{\mathrm{2}\left(\mathrm{9}\right)}=\frac{\mathrm{10}}{\mathrm{9}} \\ $$

Commented by mathdanisur last updated on 04/May/21

cool thanks sir

$${cool}\:{thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com