Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 82474 by zainal tanjung last updated on 21/Feb/20

∫_(−1/2) ^(1/2)  ∣ x cos(((πx)/2))∣ dx =

$$\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\mid\:{x}\:\mathrm{cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\mid\:{dx}\:= \\ $$

Commented by mathmax by abdo last updated on 21/Feb/20

let I =∫_(−(1/2)) ^(1/2) ∣xcos(((πx)/2))∣dx ⇒I =2∫_0 ^(1/2) ∣x∣∣cos(((πx)/2))∣dx  changement ((πx)/2) =t give I=2 ∫_0 ^(π/4) (2/π)t cost ×(2/π)dt  =(8/π^2 ) ∫_0 ^(π/4)  tcost dt =_(by parts)   (8/π^2 ){  [tsint]_0 ^(π/4)  −∫_0 ^(π/4)  sint dt}  =(8/π^2 ){(π/(4(√2))) +[cost]_0 ^(π/4) } =(8/π^2 ){(π/(4(√2))) +(1/(√2))−1}

$${let}\:{I}\:=\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \mid{xcos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\mid{dx}\:\Rightarrow{I}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \mid{x}\mid\mid{cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\mid{dx} \\ $$$${changement}\:\frac{\pi{x}}{\mathrm{2}}\:={t}\:{give}\:{I}=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{2}}{\pi}{t}\:{cost}\:×\frac{\mathrm{2}}{\pi}{dt} \\ $$$$=\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{tcost}\:{dt}\:=_{{by}\:{parts}} \:\:\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\left\{\:\:\left[{tsint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sint}\:{dt}\right\} \\ $$$$=\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\left\{\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:+\left[{cost}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \right\}\:=\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\left\{\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\mathrm{1}\right\} \\ $$

Commented by zainal tanjung last updated on 23/Apr/20

thank sir

$$\mathrm{thank}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com