Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68788 by mhmd last updated on 15/Sep/19

∫1/(1+x^2 )^n  dx

$$\int\mathrm{1}/\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} \:{dx} \\ $$

Commented by Prithwish sen last updated on 15/Sep/19

Using by parts  I_n =(x/((1+x^2 )^n )) +2n∫((x^2 dx)/((1+x^2 )^(n+1) ))  =(x/((1+x^2 )^n ))+2n[∫{(1/((1+x^2 )^n )) −(1/((1+x^2 )^(n+1) ))}dx  2nI_(n+1) −(2n−1)I_n  =  (x/((1+x^2 )^n ))   to be continued.........

$$\mathrm{Using}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }\:+\mathrm{2n}\int\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}+\mathrm{1}} } \\ $$$$=\frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }+\mathrm{2n}\left[\int\left\{\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }\:−\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}+\mathrm{1}} }\right\}\mathrm{dx}\right. \\ $$$$\mathrm{2}\boldsymbol{\mathrm{nI}}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} −\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} \:=\:\:\frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }\: \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{continued}......... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com