Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 122518 by Dwaipayan Shikari last updated on 17/Nov/20

1−(1/5)+(1/7)−(1/(11))+(1/(13))−(1/(17))+...

$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{17}}+... \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

(1/2)tanx=(1/(π−2x))−(1/(π+2x))+(1/(3π−2x))−(1/(3π+2x))+(1/(5π−2x))−(1/(5x+2π))+...  ((√3)/2)=(1/(π−((2π)/3)))−(1/(π+((2π)/3)))+(1/(3π−((2π)/3)))−(1/(3π+((2π)/3)))+(1/(5π−((2π)/3)))−..  (1/(2(√3)))=(1/π)−(1/(5π))+(1/(7π))−(1/(11π))+(1/(13π))−...  1−(1/5)+(1/7)−(1/(11))+(1/(13))−..=(π/(2(√3)))

$$\frac{\mathrm{1}}{\mathrm{2}}{tanx}=\frac{\mathrm{1}}{\pi−\mathrm{2}{x}}−\frac{\mathrm{1}}{\pi+\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{3}\pi−\mathrm{2}{x}}−\frac{\mathrm{1}}{\mathrm{3}\pi+\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{5}\pi−\mathrm{2}{x}}−\frac{\mathrm{1}}{\mathrm{5}{x}+\mathrm{2}\pi}+... \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{1}}{\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}}−\frac{\mathrm{1}}{\pi+\frac{\mathrm{2}\pi}{\mathrm{3}}}+\frac{\mathrm{1}}{\mathrm{3}\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{3}\pi+\frac{\mathrm{2}\pi}{\mathrm{3}}}+\frac{\mathrm{1}}{\mathrm{5}\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}}−.. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}=\frac{\mathrm{1}}{\pi}−\frac{\mathrm{1}}{\mathrm{5}\pi}+\frac{\mathrm{1}}{\mathrm{7}\pi}−\frac{\mathrm{1}}{\mathrm{11}\pi}+\frac{\mathrm{1}}{\mathrm{13}\pi}−... \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{13}}−..=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$

Answered by mnjuly1970 last updated on 18/Nov/20

 S=1+(1/6)Σ_(n=1) ^∞ (1/((n+(1/6)))) −(1/6)Σ_(n=1) ^∞ (1/((n−(1/6))))  =1+(1/6)[ψ((5/6))−ψ((7/6))]  =1+(1/6)[ψ((5/6))−ψ((1/6))−6]   =(1/6)[ψ(1−(1/6))−ψ((1/6))]   =(1/6)(πcot((π/6)))=(π/6)∗(√3)=(π/(2(√3))) ✓

$$\:{S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{6}}\right)}\:−\frac{\mathrm{1}}{\mathrm{6}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}−\frac{\mathrm{1}}{\mathrm{6}}\right)} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}\left[\psi\left(\frac{\mathrm{5}}{\mathrm{6}}\right)−\psi\left(\frac{\mathrm{7}}{\mathrm{6}}\right)\right] \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}\left[\psi\left(\frac{\mathrm{5}}{\mathrm{6}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{6}}\right)−\mathrm{6}\right] \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{6}}\left[\psi\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\right] \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{6}}\left(\pi{cot}\left(\frac{\pi}{\mathrm{6}}\right)\right)=\frac{\pi}{\mathrm{6}}\ast\sqrt{\mathrm{3}}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 18/Nov/20

Great sir !   I have used this   tanx=(2/(π−2x))−(2/(π+2x))+(2/(3π−2x))−(2/(3π+2x))+..

$${Great}\:{sir}\:! \\ $$$$\:{I}\:{have}\:{used}\:{this}\: \\ $$$${tanx}=\frac{\mathrm{2}}{\pi−\mathrm{2}{x}}−\frac{\mathrm{2}}{\pi+\mathrm{2}{x}}+\frac{\mathrm{2}}{\mathrm{3}\pi−\mathrm{2}{x}}−\frac{\mathrm{2}}{\mathrm{3}\pi+\mathrm{2}{x}}+.. \\ $$

Commented by mnjuly1970 last updated on 18/Nov/20

extraordinary sir dwaipayan

$${extraordinary}\:{sir}\:{dwaipayan} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com