Question Number 189559 by 073 last updated on 18/Mar/23 | ||
![]() | ||
$$\:\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =? \\ $$$$\sqrt[{\mathrm{3}}]{−\mathrm{1}}=? \\ $$ | ||
Answered by Frix last updated on 18/Mar/23 | ||
![]() | ||
$$−\mathrm{1}=\mathrm{e}^{\mathrm{i}\pi} \\ $$$$\Rightarrow \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{{n}}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}} =\mathrm{cos}\:\frac{\pi}{{n}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{{n}} \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{2}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\:=\mathrm{i} \\ $$$$\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{3}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$ | ||