Question Number 124459 by Dwaipayan Shikari last updated on 03/Dec/20 | ||
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)+... \\ $$ | ||
Commented by Dwaipayan Shikari last updated on 03/Dec/20 | ||
$${I}\:{have}\:{found}\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$ | ||
Answered by Olaf last updated on 03/Dec/20 | ||
$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×...\left(\mathrm{2}{n}\right)}\right) \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×...\left(\mathrm{2}{n}\right)}\right) \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left(\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left[\frac{\left(\mathrm{1}×\left(\mathrm{2}.\mathrm{1}\right)×\mathrm{3}×\left(\mathrm{2}.\mathrm{2}\right)×....\left(\mathrm{2}{n}−\mathrm{1}\right)×\left(\mathrm{2}{n}\right)\right.}{\left(\mathrm{2}.\mathrm{1}\right)×\left(\mathrm{2}.\mathrm{2}\right)....\left(\mathrm{2}{n}\right)}\right]^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left[\frac{\left(\mathrm{2}{n}\right)!}{\left(\mathrm{2}^{{n}} {n}!\right.}\right]^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{3}{n}} {n}!^{\mathrm{2}} } \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\left(\sqrt{\frac{\mathrm{2}}{\mathrm{3}}}−\mathrm{1}\right)\:=\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$ \\ $$ | ||
Commented by mnjuly1970 last updated on 03/Dec/20 | ||
$${very}\:{nice}\:{sir}\:{olaf} \\ $$ | ||
Commented by Dwaipayan Shikari last updated on 03/Dec/20 | ||
$${Thanking}\:{you} \\ $$ | ||