Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124459 by Dwaipayan Shikari last updated on 03/Dec/20

1−(1/2)((1/2))+(1/4)((1/2).(3/4))−(1/8)(((1.3.5)/(2.4.6)))+...

$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)+... \\ $$

Commented by Dwaipayan Shikari last updated on 03/Dec/20

I have found (√(2/3))

$${I}\:{have}\:{found}\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$

Answered by Olaf last updated on 03/Dec/20

S = 1+Σ_(n=1) ^∞ (−1)^n (1/2^n )(((1×3×...(2n−1))/(2×4×...(2n))))  S = 1+Σ_(n=1) ^∞ (−1)^n (1/2^n )(((1×3×...(2n−1))/(2×4×...(2n))))  S = 1+Σ_(n=1) ^∞ (((−1)^n )/(2^n (2n)!))(1×3×...(2n−1))^2   S = 1+Σ_(n=1) ^∞ (((−1)^n )/(2^n (2n)!))[(((1×(2.1)×3×(2.2)×....(2n−1)×(2n))/((2.1)×(2.2)....(2n)))]^2   S = 1+Σ_(n=1) ^∞ (((−1)^n )/(2^n (2n)!))[(((2n)!)/((2^n n!))]^2   S = 1+Σ_(n=1) ^∞ (((−1)^n (2n)!)/(2^(3n) n!^2 ))  S = 1+((√(2/3))−1) = (√(2/3))

$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×...\left(\mathrm{2}{n}\right)}\right) \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×...\left(\mathrm{2}{n}\right)}\right) \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left(\mathrm{1}×\mathrm{3}×...\left(\mathrm{2}{n}−\mathrm{1}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left[\frac{\left(\mathrm{1}×\left(\mathrm{2}.\mathrm{1}\right)×\mathrm{3}×\left(\mathrm{2}.\mathrm{2}\right)×....\left(\mathrm{2}{n}−\mathrm{1}\right)×\left(\mathrm{2}{n}\right)\right.}{\left(\mathrm{2}.\mathrm{1}\right)×\left(\mathrm{2}.\mathrm{2}\right)....\left(\mathrm{2}{n}\right)}\right]^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}\left[\frac{\left(\mathrm{2}{n}\right)!}{\left(\mathrm{2}^{{n}} {n}!\right.}\right]^{\mathrm{2}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{3}{n}} {n}!^{\mathrm{2}} } \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\left(\sqrt{\frac{\mathrm{2}}{\mathrm{3}}}−\mathrm{1}\right)\:=\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 03/Dec/20

very nice sir olaf

$${very}\:{nice}\:{sir}\:{olaf} \\ $$

Commented by Dwaipayan Shikari last updated on 03/Dec/20

Thanking you

$${Thanking}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com