Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 213844 by universe last updated on 18/Nov/24

 ∫_(−1) ^1 ∫_0 ^(√(1−x^2 )) ∫_(√(x^2 +y^2 )) ^(√(2−x^2 −y^2 )) (√(x^2 +y^2 +z^2 )) dzdydx

$$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\ $$

Answered by BHOOPENDRA last updated on 19/Nov/24

Answered by BHOOPENDRA last updated on 19/Nov/24

Conversion of spherical coordinates  x=ρsin φcos θ  y=ρsin φsin θ  z=ρcos φ  (√(x^2 +y^2 +z^2  ))=ρ(distance from the origin)    Integration bound  x ranges from −1 to 1  this corresponds to θ   θ∈[0,π]  φ∈[0,(π/4)]  ρ∈[0,(√2)]  ∫_(φ=0) ^(φ=(π/4))  ∫_(θ=0) ^π ∫_(ρ=0) ^(√2)   ρ.  ρ^2 sin φdρdφdθ.  [(ρ^4 /4)]_0 ^(√2)  [−cos φ]_0 ^(π/4)  [θ]_0 ^π   =1.[−(1/( (√2)))+1].π  =[((((√2)−1))/( (√2)))].π

$${Conversion}\:{of}\:{spherical}\:{coordinates} \\ $$$${x}=\rho\mathrm{sin}\:\phi\mathrm{cos}\:\theta \\ $$$${y}=\rho\mathrm{sin}\:\phi\mathrm{sin}\:\theta \\ $$$${z}=\rho\mathrm{cos}\:\phi \\ $$$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:}=\rho\left({distance}\:{from}\:{the}\:{origin}\right) \\ $$$$ \\ $$$${Integration}\:{bound} \\ $$$${x}\:{ranges}\:{from}\:−\mathrm{1}\:{to}\:\mathrm{1} \\ $$$${this}\:{corresponds}\:{to}\:\theta\: \\ $$$$\theta\in\left[\mathrm{0},\pi\right] \\ $$$$\phi\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$$$\rho\in\left[\mathrm{0},\sqrt{\mathrm{2}}\right] \\ $$$$\int_{\phi=\mathrm{0}} ^{\phi=\frac{\pi}{\mathrm{4}}} \:\int_{\theta=\mathrm{0}} ^{\pi} \int_{\rho=\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:\rho.\:\:\rho^{\mathrm{2}} \mathrm{sin}\:\phi{d}\rho{d}\phi{d}\theta. \\ $$$$\left[\frac{\rho^{\mathrm{4}} }{\mathrm{4}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\left[−\mathrm{cos}\:\phi\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} \:\left[\theta\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\mathrm{1}.\left[−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{1}\right].\pi \\ $$$$=\left[\frac{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}{\:\sqrt{\mathrm{2}}}\right].\pi \\ $$

Answered by BHOOPENDRA last updated on 19/Nov/24

Commented by universe last updated on 19/Nov/24

thank you so much sir

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com