Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167588 by AlbertEinstein last updated on 20/Mar/22

1+1=¿

$$\mathrm{1}+\mathrm{1}=¿ \\ $$

Answered by chhaythean last updated on 20/Mar/22

=(1/3)∫_0 ^(2π) ∫_0 ^(π/4) sinϕcos^3 θdϕdθ  =(1/3)∫_0 ^(2π) cos^3 θ×[−cosϕ]_0 ^(π/4) dθ  =(1/3)×[−(((√2)/2)−1)](∫_0 ^(2π) cosθdθ−∫_0 ^(2π) sin^2 θd(sinθ))  =(1/3)×[−(((√2)/2)−1)]×0  So  determinant (((∫_0 ^(2π) ∫_0 ^(π/4) ∫_0 ^(cosθ) r^2 sinϕdrdϕdθ=0)))

$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sin}\varphi\mathrm{cos}^{\mathrm{3}} \theta\mathrm{d}\varphi\mathrm{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}^{\mathrm{3}} \theta×\left[−\mathrm{cos}\varphi\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\left[−\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\mathrm{1}\right)\right]\left(\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\theta\mathrm{d}\theta−\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{sin}^{\mathrm{2}} \theta\mathrm{d}\left(\mathrm{sin}\theta\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\left[−\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\mathrm{1}\right)\right]×\mathrm{0} \\ $$$$\mathrm{So}\:\begin{array}{|c|}{\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{cos}\theta} \mathrm{r}^{\mathrm{2}} \mathrm{sin}\varphi\mathrm{drd}\varphi\mathrm{d}\theta=\mathrm{0}}\\\hline\end{array} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com